Home
You are not currently signed in.

RFC8216

  1. RFC 8216
Independent Submission                                    R. Pantos, Ed.
Request for Comments: 8216                                   Apple, Inc.
Category: Informational                                           W. May
ISSN: 2070-1721                                       MLB Advanced Media
                                                             August 2017


                          HTTP Live Streaming

Abstract

   This document describes a protocol for transferring unbounded streams
   of multimedia data.  It specifies the data format of the files and
   the actions to be taken by the server (sender) and the clients
   (receivers) of the streams.  It describes version 7 of this protocol.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This is a contribution to the RFC Series, independently of any other
   RFC stream.  The RFC Editor has chosen to publish this document at
   its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not a candidate for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc8216.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

   This document may not be modified, and derivative works of it may not
   be created, except to format it for publication as an RFC or to
   translate it into languages other than English.




Pantos & May                  Informational                     [Page 1]
RFC 8216                   HTTP Live Streaming               August 2017


Table of Contents

   1. Introduction to HTTP Live Streaming .............................4
   2. Overview ........................................................4
   3. Media Segments ..................................................6
      3.1. Supported Media Segment Formats ............................6
      3.2. MPEG-2 Transport Streams ...................................7
      3.3. Fragmented MPEG-4 ..........................................7
      3.4. Packed Audio ...............................................8
      3.5. WebVTT .....................................................8
   4. Playlists .......................................................9
      4.1. Definition of a Playlist ..................................10
      4.2. Attribute Lists ...........................................11
      4.3. Playlist Tags .............................................12
           4.3.1. Basic Tags .........................................12
                  4.3.1.1. EXTM3U ....................................12
                  4.3.1.2. EXT-X-VERSION .............................12
           4.3.2. Media Segment Tags .................................13
                  4.3.2.1. EXTINF ....................................13
                  4.3.2.2. EXT-X-BYTERANGE ...........................14
                  4.3.2.3. EXT-X-DISCONTINUITY .......................14
                  4.3.2.4. EXT-X-KEY .................................15
                  4.3.2.5. EXT-X-MAP .................................17
                  4.3.2.6. EXT-X-PROGRAM-DATE-TIME ...................18
                  4.3.2.7. EXT-X-DATERANGE ...........................18
                           4.3.2.7.1. Mapping SCTE-35 into
                                      EXT-X-DATERANGE ................20
           4.3.3. Media Playlist Tags ................................22
                  4.3.3.1. EXT-X-TARGETDURATION ......................22
                  4.3.3.2. EXT-X-MEDIA-SEQUENCE ......................22
                  4.3.3.3. EXT-X-DISCONTINUITY-SEQUENCE ..............23
                  4.3.3.4. EXT-X-ENDLIST .............................23
                  4.3.3.5. EXT-X-PLAYLIST-TYPE .......................24
                  4.3.3.6. EXT-X-I-FRAMES-ONLY .......................24
           4.3.4. Master Playlist Tags ...............................25
                  4.3.4.1. EXT-X-MEDIA ...............................25
                           4.3.4.1.1. Rendition Groups ...............28
                  4.3.4.2. EXT-X-STREAM-INF ..........................29
                           4.3.4.2.1. Alternative Renditions .........32
                  4.3.4.3. EXT-X-I-FRAME-STREAM-INF ..................33
                  4.3.4.4. EXT-X-SESSION-DATA ........................34
                  4.3.4.5. EXT-X-SESSION-KEY .........................35
           4.3.5. Media or Master Playlist Tags ......................35
                  4.3.5.1. EXT-X-INDEPENDENT-SEGMENTS ................35
                  4.3.5.2. EXT-X-START ...............................36






Pantos & May                  Informational                     [Page 2]
RFC 8216                   HTTP Live Streaming               August 2017


   5. Key Files ......................................................37
      5.1. Structure of Key Files ....................................37
      5.2. IV for AES-128 ............................................37
   6. Client/Server Responsibilities .................................37
      6.1. Introduction ..............................................37
      6.2. Server Responsibilities ...................................37
           6.2.1. General Server Responsibilities ....................37
           6.2.2. Live Playlists .....................................40
           6.2.3. Encrypting Media Segments ..........................41
           6.2.4. Providing Variant Streams ..........................42
      6.3. Client Responsibilities ...................................44
           6.3.1. General Client Responsibilities ....................44
           6.3.2. Loading the Media Playlist File ....................44
           6.3.3. Playing the Media Playlist File ....................45
           6.3.4. Reloading the Media Playlist File ..................46
           6.3.5. Determining the Next Segment to Load ...............47
           6.3.6. Decrypting Encrypted Media Segments ................47
   7. Protocol Version Compatibility .................................48
   8. Playlist Examples ..............................................50
      8.1. Simple Media Playlist .....................................50
      8.2. Live Media Playlist Using HTTPS ...........................50
      8.3. Playlist with Encrypted Media Segments ....................51
      8.4. Master Playlist ...........................................51
      8.5. Master Playlist with I-Frames .............................51
      8.6. Master Playlist with Alternative Audio ....................52
      8.7. Master Playlist with Alternative Video ....................52
      8.8. Session Data in a Master Playlist .........................53
      8.9. CHARACTERISTICS Attribute Containing Multiple
           Characteristics ...........................................54
      8.10. EXT-X-DATERANGE Carrying SCTE-35 Tags ....................54
   9. IANA Considerations ............................................54
   10. Security Considerations .......................................55
   11. References ....................................................56
      11.1. Normative References .....................................56
      11.2. Informative References ...................................59
   Contributors ......................................................60
   Authors' Addresses ................................................60














Pantos & May                  Informational                     [Page 3]
RFC 8216                   HTTP Live Streaming               August 2017


1.  Introduction to HTTP Live Streaming

   HTTP Live Streaming provides a reliable, cost-effective means of
   delivering continuous and long-form video over the Internet.  It
   allows a receiver to adapt the bit rate of the media to the current
   network conditions in order to maintain uninterrupted playback at the
   best possible quality.  It supports interstitial content boundaries.
   It provides a flexible framework for media encryption.  It can
   efficiently offer multiple renditions of the same content, such as
   audio translations.  It offers compatibility with large-scale HTTP
   caching infrastructure to support delivery to large audiences.

   Since the Internet-Draft was first posted in 2009, HTTP Live
   Streaming has been implemented and deployed by a wide array of
   content producers, tools vendors, distributors, and device
   manufacturers.  In the subsequent eight years, the protocol has been
   refined by extensive review and discussion with a variety of media
   streaming implementors.

   The purpose of this document is to facilitate interoperability
   between HTTP Live Streaming implementations by describing the media
   transmission protocol.  Using this protocol, a client can receive a
   continuous stream of media from a server for concurrent presentation.

   This document describes version 7 of the protocol.

2.  Overview

   A multimedia presentation is specified by a Uniform Resource
   Identifier (URI) [RFC3986] to a Playlist.

   A Playlist is either a Media Playlist or a Master Playlist.  Both are
   UTF-8 text files containing URIs and descriptive tags.

   A Media Playlist contains a list of Media Segments, which, when
   played sequentially, will play the multimedia presentation.















Pantos & May                  Informational                     [Page 4]
RFC 8216                   HTTP Live Streaming               August 2017


   Here is an example of a Media Playlist:

   #EXTM3U
   #EXT-X-TARGETDURATION:10

   #EXTINF:9.009,
   http://media.example.com/first.ts
   #EXTINF:9.009,
   http://media.example.com/second.ts
   #EXTINF:3.003,
   http://media.example.com/third.ts

   The first line is the format identifier tag #EXTM3U.  The line
   containing #EXT-X-TARGETDURATION says that all Media Segments will be
   10 seconds long or less.  Then, three Media Segments are declared.
   The first and second are 9.009 seconds long; the third is 3.003
   seconds.

   To play this Playlist, the client first downloads it and then
   downloads and plays each Media Segment declared within it.  The
   client reloads the Playlist as described in this document to discover
   any added segments.  Data SHOULD be carried over HTTP [RFC7230], but,
   in general, a URI can specify any protocol that can reliably transfer
   the specified resource on demand.

   A more complex presentation can be described by a Master Playlist.  A
   Master Playlist provides a set of Variant Streams, each of which
   describes a different version of the same content.

   A Variant Stream includes a Media Playlist that specifies media
   encoded at a particular bit rate, in a particular format, and at a
   particular resolution for media containing video.

   A Variant Stream can also specify a set of Renditions.  Renditions
   are alternate versions of the content, such as audio produced in
   different languages or video recorded from different camera angles.

   Clients should switch between different Variant Streams to adapt to
   network conditions.  Clients should choose Renditions based on user
   preferences.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.





Pantos & May                  Informational                     [Page 5]
RFC 8216                   HTTP Live Streaming               August 2017


3.  Media Segments

   A Media Playlist contains a series of Media Segments that make up the
   overall presentation.  A Media Segment is specified by a URI and
   optionally a byte range.

   The duration of each Media Segment is indicated in the Media Playlist
   by its EXTINF tag (Section 4.3.2.1).

   Each segment in a Media Playlist has a unique integer Media Sequence
   Number.  The Media Sequence Number of the first segment in the Media
   Playlist is either 0 or declared in the Playlist (Section 4.3.3.2).
   The Media Sequence Number of every other segment is equal to the
   Media Sequence Number of the segment that precedes it plus one.

   Each Media Segment MUST carry the continuation of the encoded
   bitstream from the end of the segment with the previous Media
   Sequence Number, where values in a series such as timestamps and
   Continuity Counters MUST continue uninterrupted.  The only exceptions
   are the first Media Segment ever to appear in a Media Playlist and
   Media Segments that are explicitly signaled as discontinuities
   (Section 4.3.2.3).  Unmarked media discontinuities can trigger
   playback errors.

   Any Media Segment that contains video SHOULD include enough
   information to initialize a video decoder and decode a continuous set
   of frames that includes the final frame in the Segment; network
   efficiency is optimized if there is enough information in the Segment
   to decode all frames in the Segment.  For example, any Media Segment
   containing H.264 video SHOULD contain an Instantaneous Decoding
   Refresh (IDR); frames prior to the first IDR will be downloaded but
   possibly discarded.

3.1.  Supported Media Segment Formats

   All Media Segments MUST be in a format described in this section.
   Transport of other media file formats is not defined.

   Some media formats require a common sequence of bytes to initialize a
   parser before a Media Segment can be parsed.  This format-specific
   sequence is called the Media Initialization Section.  The Media
   Initialization Section can be specified by an EXT-X-MAP tag
   (Section 4.3.2.5).  The Media Initialization Section MUST NOT contain
   sample data.







Pantos & May                  Informational                     [Page 6]
RFC 8216                   HTTP Live Streaming               August 2017


3.2.  MPEG-2 Transport Streams

   MPEG-2 Transport Streams are specified by [ISO_13818].

   The Media Initialization Section of an MPEG-2 Transport Stream
   Segment is a Program Association Table (PAT) followed by a Program
   Map Table (PMT).

   Transport Stream Segments MUST contain a single MPEG-2 Program;
   playback of Multi-Program Transport Streams is not defined.  Each
   Transport Stream Segment MUST contain a PAT and a PMT, or have an
   EXT-X-MAP tag (Section 4.3.2.5) applied to it.  The first two
   Transport Stream packets in a Segment without an EXT-X-MAP tag SHOULD
   be a PAT and a PMT.

3.3.  Fragmented MPEG-4

   MPEG-4 Fragments are specified by the ISO Base Media File Format
   [ISOBMFF].  Unlike regular MPEG-4 files that have a Movie Box
   ('moov') that contains sample tables and a Media Data Box ('mdat')
   containing the corresponding samples, an MPEG-4 Fragment consists of
   a Movie Fragment Box ('moof') containing a subset of the sample table
   and a Media Data Box containing those samples.  Use of MPEG-4
   Fragments does require a Movie Box for initialization, but that Movie
   Box contains only non-sample-specific information such as track and
   sample descriptions.

   A Fragmented MPEG-4 (fMP4) Segment is a "segment" as defined by
   Section 3 of [ISOBMFF], including the constraints on Media Data Boxes
   in Section 8.16 of [ISOBMFF].

   The Media Initialization Section for an fMP4 Segment is an ISO Base
   Media File that can initialize a parser for that Segment.

   Broadly speaking, fMP4 Segments and Media Initialization Sections are
   [ISOBMFF] files that also satisfy the constraints described in this
   section.

   The Media Initialization Section for an fMP4 Segment MUST contain a
   File Type Box ('ftyp') containing a brand that is compatible with
   'iso6' or higher.  The File Type Box MUST be followed by a Movie Box.
   The Movie Box MUST contain a Track Box ('trak') for every Track
   Fragment Box ('traf') in the fMP4 Segment, with matching track_ID.
   Each Track Box SHOULD contain a sample table, but its sample count
   MUST be zero.  Movie Header Boxes ('mvhd') and Track Header Boxes
   ('tkhd') MUST have durations of zero.  A Movie Extends Box ('mvex')
   MUST follow the last Track Box.  Note that a Common Media Application
   Format (CMAF) Header [CMAF] meets all these requirements.



Pantos & May                  Informational                     [Page 7]
RFC 8216                   HTTP Live Streaming               August 2017


   In an fMP4 Segment, every Track Fragment Box MUST contain a Track
   Fragment Decode Time Box ('tfdt'). fMP4 Segments MUST use movie-
   fragment-relative addressing. fMP4 Segments MUST NOT use external
   data references.  Note that a CMAF Segment meets these requirements.

   An fMP4 Segment in a Playlist containing the EXT-X-I-FRAMES-ONLY tag
   (Section 4.3.3.6) MAY omit the portion of the Media Data Box
   following the intra-coded frame (I-frame) sample data.

   Each fMP4 Segment in a Media Playlist MUST have an EXT-X-MAP tag
   applied to it.

3.4.  Packed Audio

   A Packed Audio Segment contains encoded audio samples and ID3 tags
   that are simply packed together with minimal framing and no per-
   sample timestamps.  Supported Packed Audio formats are Advanced Audio
   Coding (AAC) with Audio Data Transport Stream (ADTS) framing
   [ISO_13818_7], MP3 [ISO_13818_3], AC-3 [AC_3], and Enhanced AC-3
   [AC_3].

   A Packed Audio Segment has no Media Initialization Section.

   Each Packed Audio Segment MUST signal the timestamp of its first
   sample with an ID3 Private frame (PRIV) tag [ID3] at the beginning of
   the segment.  The ID3 PRIV owner identifier MUST be
   "com.apple.streaming.transportStreamTimestamp".  The ID3 payload MUST
   be a 33-bit MPEG-2 Program Elementary Stream timestamp expressed as a
   big-endian eight-octet number, with the upper 31 bits set to zero.
   Clients SHOULD NOT play Packed Audio Segments without this ID3 tag.

3.5.  WebVTT

   A WebVTT Segment is a section of a WebVTT [WebVTT] file.  WebVTT
   Segments carry subtitles.

   The Media Initialization Section of a WebVTT Segment is the WebVTT
   header.

   Each WebVTT Segment MUST contain all subtitle cues that are intended
   to be displayed during the period indicated by the segment EXTINF
   duration.  The start time offset and end time offset of each cue MUST
   indicate the total display time for that cue, even if part of the cue
   time range is outside the Segment period.  A WebVTT Segment MAY
   contain no cues; this indicates that no subtitles are to be displayed
   during that period.





Pantos & May                  Informational                     [Page 8]
RFC 8216                   HTTP Live Streaming               August 2017


   Each WebVTT Segment MUST either start with a WebVTT header or have an
   EXT-X-MAP tag applied to it.

   In order to synchronize timestamps between audio/video and subtitles,
   an X-TIMESTAMP-MAP metadata header SHOULD be added to each WebVTT
   header.  This header maps WebVTT cue timestamps to MPEG-2 (PES)
   timestamps in other Renditions of the Variant Stream.  Its format is:

   X-TIMESTAMP-MAP=LOCAL:<cue time>,MPEGTS:<MPEG-2 time>
   e.g., X-TIMESTAMP-MAP=LOCAL:00:00:00.000,MPEGTS:900000

   The cue timestamp in the LOCAL attribute MAY fall outside the range
   of time covered by the segment.

   If a WebVTT segment does not have the X-TIMESTAMP-MAP, the client
   MUST assume that the WebVTT cue time of 0 maps to an MPEG-2 timestamp
   of 0.

   When synchronizing WebVTT with PES timestamps, clients SHOULD account
   for cases where the 33-bit PES timestamps have wrapped and the WebVTT
   cue times have not.

4.  Playlists

   This section describes the Playlist files used by HTTP Live
   Streaming.  In this section, "MUST" and "MUST NOT" specify the rules
   for the syntax and structure of legal Playlist files.  Playlists that
   violate these rules are invalid; clients MUST fail to parse them.
   See Section 6.3.2.

   The format of the Playlist files is derived from the M3U [M3U]
   playlist file format and inherits two tags from that earlier file
   format: EXTM3U (Section 4.3.1.1) and EXTINF (Section 4.3.2.1).

   In the specification of tag syntax, a string enclosed by <>
   identifies a tag parameter; its specific format is described in its
   tag definition.  If a parameter is further surrounded by [], it is
   optional; otherwise, it is required.

   Each Playlist file MUST be identifiable either by the path component
   of its URI or by HTTP Content-Type.  In the first case, the path MUST
   end with either .m3u8 or .m3u.  In the second, the HTTP Content-Type
   MUST be "application/vnd.apple.mpegurl" or "audio/mpegurl".  Clients
   SHOULD refuse to parse Playlists that are not so identified.







Pantos & May                  Informational                     [Page 9]
RFC 8216                   HTTP Live Streaming               August 2017


4.1.  Definition of a Playlist

   Playlist files MUST be encoded in UTF-8 [RFC3629].  They MUST NOT
   contain any Byte Order Mark (BOM); clients SHOULD fail to parse
   Playlists that contain a BOM or do not parse as UTF-8.  Playlist
   files MUST NOT contain UTF-8 control characters (U+0000 to U+001F and
   U+007F to U+009F), with the exceptions of CR (U+000D) and LF
   (U+000A).  All character sequences MUST be normalized according to
   Unicode normalization form "NFC" [UNICODE].  Note that US-ASCII
   [US_ASCII] conforms to these rules.

   Lines in a Playlist file are terminated by either a single line feed
   character or a carriage return character followed by a line feed
   character.  Each line is a URI, is blank, or starts with the
   character '#'.  Blank lines are ignored.  Whitespace MUST NOT be
   present, except for elements in which it is explicitly specified.

   Lines that start with the character '#' are either comments or tags.
   Tags begin with #EXT.  They are case sensitive.  All other lines that
   begin with '#' are comments and SHOULD be ignored.

   A URI line identifies a Media Segment or a Playlist file (see
   Section 4.3.4.2).  Each Media Segment is specified by a URI and the
   tags that apply to it.

   A Playlist is a Media Playlist if all URI lines in the Playlist
   identify Media Segments.  A Playlist is a Master Playlist if all URI
   lines in the Playlist identify Media Playlists.  A Playlist MUST be
   either a Media Playlist or a Master Playlist; all other Playlists are
   invalid.

   A URI in a Playlist, whether it is a URI line or part of a tag, MAY
   be relative.  Any relative URI is considered to be relative to the
   URI of the Playlist that contains it.

   The duration of a Media Playlist is the sum of the durations of the
   Media Segments within it.

   The segment bit rate of a Media Segment is the size of the Media
   Segment divided by its EXTINF duration (Section 4.3.2.1).  Note that
   this includes container overhead but does not include overhead
   imposed by the delivery system, such as HTTP, TCP, or IP headers.

   The peak segment bit rate of a Media Playlist is the largest bit rate
   of any contiguous set of segments whose total duration is between 0.5
   and 1.5 times the target duration.  The bit rate of a set is
   calculated by dividing the sum of the segment sizes by the sum of the
   segment durations.



Pantos & May                  Informational                    [Page 10]
RFC 8216                   HTTP Live Streaming               August 2017


   The average segment bit rate of a Media Playlist is the sum of the
   sizes (in bits) of every Media Segment in the Media Playlist, divided
   by the Media Playlist duration.  Note that this includes container
   overhead, but not HTTP or other overhead imposed by the delivery
   system.

4.2.  Attribute Lists

   Certain tags have values that are attribute-lists.  An attribute-list
   is a comma-separated list of attribute/value pairs with no
   whitespace.

   An attribute/value pair has the following syntax:

   AttributeName=AttributeValue

   An AttributeName is an unquoted string containing characters from the
   set [A..Z], [0..9] and '-'.  Therefore, AttributeNames contain only
   uppercase letters, not lowercase.  There MUST NOT be any whitespace
   between the AttributeName and the '=' character, nor between the '='
   character and the AttributeValue.

   An AttributeValue is one of the following:

   o  decimal-integer: an unquoted string of characters from the set
      [0..9] expressing an integer in base-10 arithmetic in the range
      from 0 to 2^64-1 (18446744073709551615).  A decimal-integer may be
      from 1 to 20 characters long.

   o  hexadecimal-sequence: an unquoted string of characters from the
      set [0..9] and [A..F] that is prefixed with 0x or 0X.  The maximum
      length of a hexadecimal-sequence depends on its AttributeNames.

   o  decimal-floating-point: an unquoted string of characters from the
      set [0..9] and '.' that expresses a non-negative floating-point
      number in decimal positional notation.

   o  signed-decimal-floating-point: an unquoted string of characters
      from the set [0..9], '-', and '.' that expresses a signed
      floating-point number in decimal positional notation.

   o  quoted-string: a string of characters within a pair of double
      quotes (0x22).  The following characters MUST NOT appear in a
      quoted-string: line feed (0xA), carriage return (0xD), or double
      quote (0x22).  Quoted-string AttributeValues SHOULD be constructed
      so that byte-wise comparison is sufficient to test two quoted-
      string AttributeValues for equality.  Note that this implies case-
      sensitive comparison.



Pantos & May                  Informational                    [Page 11]
RFC 8216                   HTTP Live Streaming               August 2017


   o  enumerated-string: an unquoted character string from a set that is
      explicitly defined by the AttributeName.  An enumerated-string
      will never contain double quotes ("), commas (,), or whitespace.

   o  decimal-resolution: two decimal-integers separated by the "x"
      character.  The first integer is a horizontal pixel dimension
      (width); the second is a vertical pixel dimension (height).

   The type of the AttributeValue for a given AttributeName is specified
   by the attribute definition.

   A given AttributeName MUST NOT appear more than once in a given
   attribute-list.  Clients SHOULD refuse to parse such Playlists.

4.3.  Playlist Tags

   Playlist tags specify either global parameters of the Playlist or
   information about the Media Segments or Media Playlists that appear
   after them.

4.3.1.  Basic Tags

   These tags are allowed in both Media Playlists and Master Playlists.

4.3.1.1.  EXTM3U

   The EXTM3U tag indicates that the file is an Extended M3U [M3U]
   Playlist file.  It MUST be the first line of every Media Playlist and
   every Master Playlist.  Its format is:

   #EXTM3U

4.3.1.2.  EXT-X-VERSION

   The EXT-X-VERSION tag indicates the compatibility version of the
   Playlist file, its associated media, and its server.

   The EXT-X-VERSION tag applies to the entire Playlist file.  Its
   format is:

   #EXT-X-VERSION:<n>

   where n is an integer indicating the protocol compatibility version
   number.







Pantos & May                  Informational                    [Page 12]
RFC 8216                   HTTP Live Streaming               August 2017


   It MUST appear in all Playlists containing tags or attributes that
   are not compatible with protocol version 1 to support
   interoperability with older clients.  Section 7 specifies the minimum
   value of the compatibility version number for any given Playlist
   file.

   A Playlist file MUST NOT contain more than one EXT-X-VERSION tag.  If
   a client encounters a Playlist with multiple EXT-X-VERSION tags, it
   MUST fail to parse it.

4.3.2.  Media Segment Tags

   Each Media Segment is specified by a series of Media Segment tags
   followed by a URI.  Some Media Segment tags apply to just the next
   segment; others apply to all subsequent segments until another
   instance of the same tag.

   A Media Segment tag MUST NOT appear in a Master Playlist.  Clients
   MUST fail to parse Playlists that contain both Media Segment tags and
   Master Playlist tags (Section 4.3.4).

4.3.2.1.  EXTINF

   The EXTINF tag specifies the duration of a Media Segment.  It applies
   only to the next Media Segment.  This tag is REQUIRED for each Media
   Segment.  Its format is:

   #EXTINF:<duration>,[<title>]

   where duration is a decimal-floating-point or decimal-integer number
   (as described in Section 4.2) that specifies the duration of the
   Media Segment in seconds.  Durations SHOULD be decimal-floating-
   point, with enough accuracy to avoid perceptible error when segment
   durations are accumulated.  However, if the compatibility version
   number is less than 3, durations MUST be integers.  Durations that
   are reported as integers SHOULD be rounded to the nearest integer.
   The remainder of the line following the comma is an optional human-
   readable informative title of the Media Segment expressed as UTF-8
   text.












Pantos & May                  Informational                    [Page 13]
RFC 8216                   HTTP Live Streaming               August 2017


4.3.2.2.  EXT-X-BYTERANGE

   The EXT-X-BYTERANGE tag indicates that a Media Segment is a sub-range
   of the resource identified by its URI.  It applies only to the next
   URI line that follows it in the Playlist.  Its format is:

   #EXT-X-BYTERANGE:<n>[@<o>]

   where n is a decimal-integer indicating the length of the sub-range
   in bytes.  If present, o is a decimal-integer indicating the start of
   the sub-range, as a byte offset from the beginning of the resource.
   If o is not present, the sub-range begins at the next byte following
   the sub-range of the previous Media Segment.

   If o is not present, a previous Media Segment MUST appear in the
   Playlist file and MUST be a sub-range of the same media resource, or
   the Media Segment is undefined and the client MUST fail to parse the
   Playlist.

   A Media Segment without an EXT-X-BYTERANGE tag consists of the entire
   resource identified by its URI.

   Use of the EXT-X-BYTERANGE tag REQUIRES a compatibility version
   number of 4 or greater.

4.3.2.3.  EXT-X-DISCONTINUITY

   The EXT-X-DISCONTINUITY tag indicates a discontinuity between the
   Media Segment that follows it and the one that preceded it.

   Its format is:

   #EXT-X-DISCONTINUITY

   The EXT-X-DISCONTINUITY tag MUST be present if there is a change in
   any of the following characteristics:

   o  file format

   o  number, type, and identifiers of tracks

   o  timestamp sequence









Pantos & May                  Informational                    [Page 14]
RFC 8216                   HTTP Live Streaming               August 2017


   The EXT-X-DISCONTINUITY tag SHOULD be present if there is a change in
   any of the following characteristics:

   o  encoding parameters

   o  encoding sequence

   See Sections 3, 6.2.1, and 6.3.3 for more information about the EXT-
   X-DISCONTINUITY tag.

4.3.2.4.  EXT-X-KEY

   Media Segments MAY be encrypted.  The EXT-X-KEY tag specifies how to
   decrypt them.  It applies to every Media Segment and to every Media
   Initialization Section declared by an EXT-X-MAP tag that appears
   between it and the next EXT-X-KEY tag in the Playlist file with the
   same KEYFORMAT attribute (or the end of the Playlist file).  Two or
   more EXT-X-KEY tags with different KEYFORMAT attributes MAY apply to
   the same Media Segment if they ultimately produce the same decryption
   key.  The format is:

   #EXT-X-KEY:<attribute-list>

   The following attributes are defined:

      METHOD

      The value is an enumerated-string that specifies the encryption
      method.  This attribute is REQUIRED.

      The methods defined are: NONE, AES-128, and SAMPLE-AES.

      An encryption method of NONE means that Media Segments are not
      encrypted.  If the encryption method is NONE, other attributes
      MUST NOT be present.

      An encryption method of AES-128 signals that Media Segments are
      completely encrypted using the Advanced Encryption Standard (AES)
      [AES_128] with a 128-bit key, Cipher Block Chaining (CBC), and
      Public-Key Cryptography Standards #7 (PKCS7) padding [RFC5652].
      CBC is restarted on each segment boundary, using either the
      Initialization Vector (IV) attribute value or the Media Sequence
      Number as the IV; see Section 5.2.

      An encryption method of SAMPLE-AES means that the Media Segments
      contain media samples, such as audio or video, that are encrypted
      using the Advanced Encryption Standard [AES_128].  How these media
      streams are encrypted and encapsulated in a segment depends on the



Pantos & May                  Informational                    [Page 15]
RFC 8216                   HTTP Live Streaming               August 2017


      media encoding and the media format of the segment.  fMP4 Media
      Segments are encrypted using the 'cbcs' scheme of Common
      Encryption [COMMON_ENC].  Encryption of other Media Segment
      formats containing H.264 [H_264], AAC [ISO_14496], AC-3 [AC_3],
      and Enhanced AC-3 [AC_3] media streams is described in the HTTP
      Live Streaming (HLS) Sample Encryption specification [SampleEnc].
      The IV attribute MAY be present; see Section 5.2.

      URI

      The value is a quoted-string containing a URI that specifies how
      to obtain the key.  This attribute is REQUIRED unless the METHOD
      is NONE.

      IV

      The value is a hexadecimal-sequence that specifies a 128-bit
      unsigned integer Initialization Vector to be used with the key.
      Use of the IV attribute REQUIRES a compatibility version number of
      2 or greater.  See Section 5.2 for when the IV attribute is used.

      KEYFORMAT

      The value is a quoted-string that specifies how the key is
      represented in the resource identified by the URI; see Section 5
      for more detail.  This attribute is OPTIONAL; its absence
      indicates an implicit value of "identity".  Use of the KEYFORMAT
      attribute REQUIRES a compatibility version number of 5 or greater.

      KEYFORMATVERSIONS

      The value is a quoted-string containing one or more positive
      integers separated by the "/" character (for example, "1", "1/2",
      or "1/2/5").  If more than one version of a particular KEYFORMAT
      is defined, this attribute can be used to indicate which
      version(s) this instance complies with.  This attribute is
      OPTIONAL; if it is not present, its value is considered to be "1".
      Use of the KEYFORMATVERSIONS attribute REQUIRES a compatibility
      version number of 5 or greater.

   If the Media Playlist file does not contain an EXT-X-KEY tag, then
   Media Segments are not encrypted.

   See Section 5 for the format of the Key file and Sections 5.2, 6.2.3,
   and 6.3.6 for additional information on Media Segment encryption.






Pantos & May                  Informational                    [Page 16]
RFC 8216                   HTTP Live Streaming               August 2017


4.3.2.5.  EXT-X-MAP

   The EXT-X-MAP tag specifies how to obtain the Media Initialization
   Section (Section 3) required to parse the applicable Media Segments.
   It applies to every Media Segment that appears after it in the
   Playlist until the next EXT-X-MAP tag or until the end of the
   Playlist.

   Its format is:

   #EXT-X-MAP:<attribute-list>

   The following attributes are defined:

      URI

      The value is a quoted-string containing a URI that identifies a
      resource that contains the Media Initialization Section.  This
      attribute is REQUIRED.

      BYTERANGE

      The value is a quoted-string specifying a byte range into the
      resource identified by the URI attribute.  This range SHOULD
      contain only the Media Initialization Section.  The format of the
      byte range is described in Section 4.3.2.2.  This attribute is
      OPTIONAL; if it is not present, the byte range is the entire
      resource indicated by the URI.

   An EXT-X-MAP tag SHOULD be supplied for Media Segments in Playlists
   with the EXT-X-I-FRAMES-ONLY tag when the first Media Segment (i.e.,
   I-frame) in the Playlist (or the first segment following an EXT-
   X-DISCONTINUITY tag) does not immediately follow the Media
   Initialization Section at the beginning of its resource.

   Use of the EXT-X-MAP tag in a Media Playlist that contains the EXT-
   X-I-FRAMES-ONLY tag REQUIRES a compatibility version number of 5 or
   greater.  Use of the EXT-X-MAP tag in a Media Playlist that DOES NOT
   contain the EXT-X-I-FRAMES-ONLY tag REQUIRES a compatibility version
   number of 6 or greater.

   If the Media Initialization Section declared by an EXT-X-MAP tag is
   encrypted with a METHOD of AES-128, the IV attribute of the EXT-X-KEY
   tag that applies to the EXT-X-MAP is REQUIRED.







Pantos & May                  Informational                    [Page 17]
RFC 8216                   HTTP Live Streaming               August 2017


4.3.2.6.  EXT-X-PROGRAM-DATE-TIME

   The EXT-X-PROGRAM-DATE-TIME tag associates the first sample of a
   Media Segment with an absolute date and/or time.  It applies only to
   the next Media Segment.  Its format is:

   #EXT-X-PROGRAM-DATE-TIME:<date-time-msec>

   where date-time-msec is an ISO/IEC 8601:2004 [ISO_8601] date/time
   representation, such as YYYY-MM-DDThh:mm:ss.SSSZ.  It SHOULD indicate
   a time zone and fractional parts of seconds, to millisecond accuracy.

   For example:

   #EXT-X-PROGRAM-DATE-TIME:2010-02-19T14:54:23.031+08:00

   See Sections 6.2.1 and 6.3.3 for more information on the EXT-X-
   PROGRAM-DATE-TIME tag.

4.3.2.7.  EXT-X-DATERANGE

   The EXT-X-DATERANGE tag associates a Date Range (i.e., a range of
   time defined by a starting and ending date) with a set of attribute/
   value pairs.  Its format is:

   #EXT-X-DATERANGE:<attribute-list>

   where the defined attributes are:

      ID

      A quoted-string that uniquely identifies a Date Range in the
      Playlist.  This attribute is REQUIRED.

      CLASS

      A client-defined quoted-string that specifies some set of
      attributes and their associated value semantics.  All Date Ranges
      with the same CLASS attribute value MUST adhere to these
      semantics.  This attribute is OPTIONAL.

      START-DATE

      A quoted-string containing the ISO-8601 date at which the Date
      Range begins.  This attribute is REQUIRED.






Pantos & May                  Informational                    [Page 18]
RFC 8216                   HTTP Live Streaming               August 2017


      END-DATE

      A quoted-string containing the ISO-8601 date at which the Date
      Range ends.  It MUST be equal to or later than the value of the
      START-DATE attribute.  This attribute is OPTIONAL.

      DURATION

      The duration of the Date Range expressed as a decimal-floating-
      point number of seconds.  It MUST NOT be negative.  A single
      instant in time (e.g., crossing a finish line) SHOULD be
      represented with a duration of 0.  This attribute is OPTIONAL.

      PLANNED-DURATION

      The expected duration of the Date Range expressed as a decimal-
      floating-point number of seconds.  It MUST NOT be negative.  This
      attribute SHOULD be used to indicate the expected duration of a
      Date Range whose actual duration is not yet known.  It is
      OPTIONAL.

      X-<client-attribute>

      The "X-" prefix defines a namespace reserved for client-defined
      attributes.  The client-attribute MUST be a legal AttributeName.
      Clients SHOULD use a reverse-DNS syntax when defining their own
      attribute names to avoid collisions.  The attribute value MUST be
      a quoted-string, a hexadecimal-sequence, or a decimal-floating-
      point.  An example of a client-defined attribute is X-COM-EXAMPLE-
      AD-ID="XYZ123".  These attributes are OPTIONAL.

      SCTE35-CMD, SCTE35-OUT, SCTE35-IN

      Used to carry SCTE-35 data; see Section 4.3.2.7.1 for more
      information.  These attributes are OPTIONAL.

      END-ON-NEXT

      An enumerated-string whose value MUST be YES.  This attribute
      indicates that the end of the range containing it is equal to the
      START-DATE of its Following Range.  The Following Range is the
      Date Range of the same CLASS that has the earliest START-DATE
      after the START-DATE of the range in question.  This attribute is
      OPTIONAL.

   An EXT-X-DATERANGE tag with an END-ON-NEXT=YES attribute MUST have a
   CLASS attribute.  Other EXT-X-DATERANGE tags with the same CLASS
   attribute MUST NOT specify Date Ranges that overlap.



Pantos & May                  Informational                    [Page 19]
RFC 8216                   HTTP Live Streaming               August 2017


   An EXT-X-DATERANGE tag with an END-ON-NEXT=YES attribute MUST NOT
   contain DURATION or END-DATE attributes.

   A Date Range with neither a DURATION, an END-DATE, nor an END-ON-
   NEXT=YES attribute has an unknown duration, even if it has a PLANNED-
   DURATION.

   If a Playlist contains an EXT-X-DATERANGE tag, it MUST also contain
   at least one EXT-X-PROGRAM-DATE-TIME tag.

   If a Playlist contains two EXT-X-DATERANGE tags with the same ID
   attribute value, then any AttributeName that appears in both tags
   MUST have the same AttributeValue.

   If a Date Range contains both a DURATION attribute and an END-DATE
   attribute, the value of the END-DATE attribute MUST be equal to the
   value of the START-DATE attribute plus the value of the DURATION
   attribute.

   Clients SHOULD ignore EXT-X-DATERANGE tags with illegal syntax.

4.3.2.7.1.  Mapping SCTE-35 into EXT-X-DATERANGE

   Splice information carried in source media according to the SCTE-35
   specification [SCTE35] MAY be represented in a Media Playlist using
   EXT-X-DATERANGE tags.

   Each SCTE-35 splice_info_section() containing a splice_null(),
   splice_schedule(), bandwidth_reservation(), or private_cmd() SHOULD
   be represented by an EXT-X-DATERANGE tag with an SCTE35-CMD attribute
   whose value is the big-endian binary representation of the
   splice_info_section(), expressed as a hexadecimal-sequence.

   An SCTE-35 splice out/in pair signaled by a pair of splice_insert()
   commands SHOULD be represented by one or more EXT-X-DATERANGE tags
   carrying the same ID attribute, which MUST be unique to that splice
   out/in pair.  The "out" splice_info_section() (with
   out_of_network_indicator set to 1) MUST be placed in an SCTE35-OUT
   attribute, with the same formatting as SCTE35-CMD.  The "in"
   splice_info_section() (with out_of_network_indicator set to 0) MUST
   be placed in an SCTE35-IN attribute, with the same formatting as
   SCTE35-CMD.

   An SCTE-35 splice out/in pair signaled by a pair of time_signal()
   commands, each carrying a single segmentation_descriptor(), SHOULD be
   represented by one or more EXT-X-DATERANGE tags carrying the same ID
   attribute, which MUST be unique to that splice out/in pair.  The




Pantos & May                  Informational                    [Page 20]
RFC 8216                   HTTP Live Streaming               August 2017


   "out" splice_info_section() MUST be placed in an SCTE35-OUT
   attribute; the "in" splice_info_section() MUST be placed in an
   SCTE35-IN attribute.

   Different types of segmentation, as indicated by the
   segmentation_type_id in the segmentation_descriptor(), SHOULD be
   represented by separate EXT-X-DATERANGE tags, even if two or more
   segmentation_descriptor()s arrive in the same splice_info_section().
   In that case, each EXT-X-DATERANGE tag will have an SCTE35-OUT,
   SCTE35-IN, or SCTE35-CMD attribute whose value is the entire
   splice_info_section().

   An SCTE-35 time_signal() command that does not signal a splice out or
   in point SHOULD be represented by an EXT-X-DATERANGE tag with an
   SCTE35-CMD attribute.

   The START-DATE of an EXT-X-DATERANGE tag containing an SCTE35-OUT
   attribute MUST be the date and time that corresponds to the program
   time of that splice.

   The START-DATE of an EXT-X-DATERANGE tag containing an SCTE35-CMD
   MUST be the date and time specified by the splice_time() in the
   command or the program time at which the command appeared in the
   source stream if the command does not specify a splice_time().

   An EXT-X-DATERANGE tag containing an SCTE35-OUT attribute MAY contain
   a PLANNED-DURATION attribute.  Its value MUST be the planned duration
   of the splice.

   The DURATION of an EXT-X-DATERANGE tag containing an SCTE35-IN
   attribute MUST be the actual (not planned) program duration between
   the corresponding out-point and that in-point.

   The END-DATE of an EXT-X-DATERANGE tag containing an SCTE35-IN
   attribute MUST be the actual (not planned) program date and time of
   that in-point.

   If the actual end date and time is not known when an SCTE35-OUT
   attribute is added to the Playlist, the DURATION attribute and the
   END-TIME attribute MUST NOT be present; the actual end date of the
   splice SHOULD be signaled by another EXT-X-DATERANGE tag once it has
   been established.

   A canceled splice SHOULD NOT appear in the Playlist as an EXT-
   X-DATERANGE tag.






Pantos & May                  Informational                    [Page 21]
RFC 8216                   HTTP Live Streaming               August 2017


   An EXT-X-DATERANGE tag announcing a splice SHOULD be added to a
   Playlist at the same time as the last pre-splice Media Segment, or
   earlier if possible.

   The ID attribute of an EXT-X-DATERANGE tag MAY contain a
   splice_event_id and/or a segmentation_event_id, but it MUST be unique
   in the Playlist.  If there is a possibility that an SCTE-35 id will
   be reused, the ID attribute value MUST include disambiguation, such
   as a date or sequence number.

4.3.3.  Media Playlist Tags

   Media Playlist tags describe global parameters of the Media Playlist.
   There MUST NOT be more than one Media Playlist tag of each type in
   any Media Playlist.

   A Media Playlist tag MUST NOT appear in a Master Playlist.

4.3.3.1.  EXT-X-TARGETDURATION

   The EXT-X-TARGETDURATION tag specifies the maximum Media Segment
   duration.  The EXTINF duration of each Media Segment in the Playlist
   file, when rounded to the nearest integer, MUST be less than or equal
   to the target duration; longer segments can trigger playback stalls
   or other errors.  It applies to the entire Playlist file.  Its format
   is:

   #EXT-X-TARGETDURATION:<s>

   where s is a decimal-integer indicating the target duration in
   seconds.  The EXT-X-TARGETDURATION tag is REQUIRED.

4.3.3.2.  EXT-X-MEDIA-SEQUENCE

   The EXT-X-MEDIA-SEQUENCE tag indicates the Media Sequence Number of
   the first Media Segment that appears in a Playlist file.  Its format
   is:

   #EXT-X-MEDIA-SEQUENCE:<number>

   where number is a decimal-integer.

   If the Media Playlist file does not contain an EXT-X-MEDIA-SEQUENCE
   tag, then the Media Sequence Number of the first Media Segment in the
   Media Playlist SHALL be considered to be 0.  A client MUST NOT assume
   that segments with the same Media Sequence Number in different Media
   Playlists contain matching content (see Section 6.3.2).




Pantos & May                  Informational                    [Page 22]
RFC 8216                   HTTP Live Streaming               August 2017


   A URI for a Media Segment is not required to contain its Media
   Sequence Number.

   See Sections 6.2.1 and 6.3.5 for more information on setting the EXT-
   X-MEDIA-SEQUENCE tag.

   The EXT-X-MEDIA-SEQUENCE tag MUST appear before the first Media
   Segment in the Playlist.

4.3.3.3.  EXT-X-DISCONTINUITY-SEQUENCE

   The EXT-X-DISCONTINUITY-SEQUENCE tag allows synchronization between
   different Renditions of the same Variant Stream or different Variant
   Streams that have EXT-X-DISCONTINUITY tags in their Media Playlists.

   Its format is:

   #EXT-X-DISCONTINUITY-SEQUENCE:<number>

   where number is a decimal-integer.

   If the Media Playlist does not contain an EXT-X-DISCONTINUITY-
   SEQUENCE tag, then the Discontinuity Sequence Number of the first
   Media Segment in the Playlist SHALL be considered to be 0.

   The EXT-X-DISCONTINUITY-SEQUENCE tag MUST appear before the first
   Media Segment in the Playlist.

   The EXT-X-DISCONTINUITY-SEQUENCE tag MUST appear before any EXT-
   X-DISCONTINUITY tag.

   See Sections 6.2.1 and 6.2.2 for more information about setting the
   value of the EXT-X-DISCONTINUITY-SEQUENCE tag.

4.3.3.4.  EXT-X-ENDLIST

   The EXT-X-ENDLIST tag indicates that no more Media Segments will be
   added to the Media Playlist file.  It MAY occur anywhere in the Media
   Playlist file.  Its format is:

   #EXT-X-ENDLIST










Pantos & May                  Informational                    [Page 23]
RFC 8216                   HTTP Live Streaming               August 2017


4.3.3.5.  EXT-X-PLAYLIST-TYPE

   The EXT-X-PLAYLIST-TYPE tag provides mutability information about the
   Media Playlist file.  It applies to the entire Media Playlist file.
   It is OPTIONAL.  Its format is:

   #EXT-X-PLAYLIST-TYPE:<type-enum>

   where type-enum is either EVENT or VOD.

   Section 6.2.1 defines the implications of the EXT-X-PLAYLIST-TYPE
   tag.

   If the EXT-X-PLAYLIST-TYPE value is EVENT, Media Segments can only be
   added to the end of the Media Playlist.  If the EXT-X-PLAYLIST-TYPE
   value is Video On Demand (VOD), the Media Playlist cannot change.

   If the EXT-X-PLAYLIST-TYPE tag is omitted from a Media Playlist, the
   Playlist can be updated according to the rules in Section 6.2.1 with
   no additional restrictions.  For example, a live Playlist
   (Section 6.2.2) MAY be updated to remove Media Segments in the order
   that they appeared.

4.3.3.6.  EXT-X-I-FRAMES-ONLY

   The EXT-X-I-FRAMES-ONLY tag indicates that each Media Segment in the
   Playlist describes a single I-frame.  I-frames are encoded video
   frames whose encoding does not depend on any other frame.  I-frame
   Playlists can be used for trick play, such as fast forward, rapid
   reverse, and scrubbing.

   The EXT-X-I-FRAMES-ONLY tag applies to the entire Playlist.  Its
   format is:

   #EXT-X-I-FRAMES-ONLY

   In a Playlist with the EXT-X-I-FRAMES-ONLY tag, the Media Segment
   duration (EXTINF tag value) is the time between the presentation time
   of the I-frame in the Media Segment and the presentation time of the
   next I-frame in the Playlist, or the end of the presentation if it is
   the last I-frame in the Playlist.

   Media resources containing I-frame segments MUST begin with either a
   Media Initialization Section (Section 3) or be accompanied by an EXT-
   X-MAP tag indicating the Media Initialization Section so that clients
   can load and decode I-frame segments in any order.  The byte range of
   an I-frame segment with an EXT-X-BYTERANGE tag applied to it
   (Section 4.3.2.2) MUST NOT include its Media Initialization Section;



Pantos & May                  Informational                    [Page 24]
RFC 8216                   HTTP Live Streaming               August 2017


   clients can assume that the Media Initialization Section is defined
   by the EXT-X-MAP tag or is located from the start of the resource to
   the offset of the first I-frame segment in that resource.

   Use of the EXT-X-I-FRAMES-ONLY REQUIRES a compatibility version
   number of 4 or greater.

4.3.4.  Master Playlist Tags

   Master Playlist tags define the Variant Streams, Renditions, and
   other global parameters of the presentation.

   Master Playlist tags MUST NOT appear in a Media Playlist; clients
   MUST fail to parse any Playlist that contains both a Master Playlist
   tag and either a Media Playlist tag or a Media Segment tag.

4.3.4.1.  EXT-X-MEDIA

   The EXT-X-MEDIA tag is used to relate Media Playlists that contain
   alternative Renditions (Section 4.3.4.2.1) of the same content.  For
   example, three EXT-X-MEDIA tags can be used to identify audio-only
   Media Playlists that contain English, French, and Spanish Renditions
   of the same presentation.  Or, two EXT-X-MEDIA tags can be used to
   identify video-only Media Playlists that show two different camera
   angles.

   Its format is:

   #EXT-X-MEDIA:<attribute-list>

   The following attributes are defined:

      TYPE

      The value is an enumerated-string; valid strings are AUDIO, VIDEO,
      SUBTITLES, and CLOSED-CAPTIONS.  This attribute is REQUIRED.

      Typically, closed-caption [CEA608] media is carried in the video
      stream.  Therefore, an EXT-X-MEDIA tag with TYPE of CLOSED-
      CAPTIONS does not specify a Rendition; the closed-caption media is
      present in the Media Segments of every video Rendition.

      URI

      The value is a quoted-string containing a URI that identifies the
      Media Playlist file.  This attribute is OPTIONAL; see
      Section 4.3.4.2.1.  If the TYPE is CLOSED-CAPTIONS, the URI
      attribute MUST NOT be present.



Pantos & May                  Informational                    [Page 25]
RFC 8216                   HTTP Live Streaming               August 2017


      GROUP-ID

      The value is a quoted-string that specifies the group to which the
      Rendition belongs.  See Section 4.3.4.1.1.  This attribute is
      REQUIRED.

      LANGUAGE

      The value is a quoted-string containing one of the standard Tags
      for Identifying Languages [RFC5646], which identifies the primary
      language used in the Rendition.  This attribute is OPTIONAL.

      ASSOC-LANGUAGE

      The value is a quoted-string containing a language tag [RFC5646]
      that identifies a language that is associated with the Rendition.
      An associated language is often used in a different role than the
      language specified by the LANGUAGE attribute (e.g., written versus
      spoken or a fallback dialect).  This attribute is OPTIONAL.

      The LANGUAGE and ASSOC-LANGUAGE attributes can be used, for
      example, to link Norwegian Renditions that use different spoken
      and written languages.

      NAME

      The value is a quoted-string containing a human-readable
      description of the Rendition.  If the LANGUAGE attribute is
      present, then this description SHOULD be in that language.  This
      attribute is REQUIRED.

      DEFAULT

      The value is an enumerated-string; valid strings are YES and NO.
      If the value is YES, then the client SHOULD play this Rendition of
      the content in the absence of information from the user indicating
      a different choice.  This attribute is OPTIONAL.  Its absence
      indicates an implicit value of NO.

      AUTOSELECT

      The value is an enumerated-string; valid strings are YES and NO.
      This attribute is OPTIONAL.  Its absence indicates an implicit
      value of NO.  If the value is YES, then the client MAY choose to
      play this Rendition in the absence of explicit user preference
      because it matches the current playback environment, such as
      chosen system language.




Pantos & May                  Informational                    [Page 26]
RFC 8216                   HTTP Live Streaming               August 2017


      If the AUTOSELECT attribute is present, its value MUST be YES if
      the value of the DEFAULT attribute is YES.

      FORCED

      The value is an enumerated-string; valid strings are YES and NO.
      This attribute is OPTIONAL.  Its absence indicates an implicit
      value of NO.  The FORCED attribute MUST NOT be present unless the
      TYPE is SUBTITLES.

      A value of YES indicates that the Rendition contains content that
      is considered essential to play.  When selecting a FORCED
      Rendition, a client SHOULD choose the one that best matches the
      current playback environment (e.g., language).

      A value of NO indicates that the Rendition contains content that
      is intended to be played in response to explicit user request.

      INSTREAM-ID

      The value is a quoted-string that specifies a Rendition within the
      segments in the Media Playlist.  This attribute is REQUIRED if the
      TYPE attribute is CLOSED-CAPTIONS, in which case it MUST have one
      of the values: "CC1", "CC2", "CC3", "CC4", or "SERVICEn" where n
      MUST be an integer between 1 and 63 (e.g., "SERVICE3" or
      "SERVICE42").

      The values "CC1", "CC2", "CC3", and "CC4" identify a Line 21 Data
      Services channel [CEA608].  The "SERVICE" values identify a
      Digital Television Closed Captioning [CEA708] service block
      number.

      For all other TYPE values, the INSTREAM-ID MUST NOT be specified.

      CHARACTERISTICS

      The value is a quoted-string containing one or more Uniform Type
      Identifiers [UTI] separated by comma (,) characters.  This
      attribute is OPTIONAL.  Each UTI indicates an individual
      characteristic of the Rendition.

      A SUBTITLES Rendition MAY include the following characteristics:
      "public.accessibility.transcribes-spoken-dialog",
      "public.accessibility.describes-music-and-sound", and
      "public.easy-to-read" (which indicates that the subtitles have
      been edited for ease of reading).





Pantos & May                  Informational                    [Page 27]
RFC 8216                   HTTP Live Streaming               August 2017


      An AUDIO Rendition MAY include the following characteristic:
      "public.accessibility.describes-video".

      The CHARACTERISTICS attribute MAY include private UTIs.

      CHANNELS

      The value is a quoted-string that specifies an ordered, backslash-
      separated ("/") list of parameters.  If the TYPE attribute is
      AUDIO, then the first parameter is a count of audio channels
      expressed as a decimal-integer, indicating the maximum number of
      independent, simultaneous audio channels present in any Media
      Segment in the Rendition.  For example, an AC-3 5.1 Rendition
      would have a CHANNELS="6" attribute.  No other CHANNELS parameters
      are currently defined.

      All audio EXT-X-MEDIA tags SHOULD have a CHANNELS attribute.  If a
      Master Playlist contains two Renditions encoded with the same
      codec but a different number of channels, then the CHANNELS
      attribute is REQUIRED; otherwise, it is OPTIONAL.

4.3.4.1.1.  Rendition Groups

   A set of one or more EXT-X-MEDIA tags with the same GROUP-ID value
   and the same TYPE value defines a Group of Renditions.  Each member
   of the Group MUST be an alternative Rendition of the same content;
   otherwise, playback errors can occur.

   All EXT-X-MEDIA tags in a Playlist MUST meet the following
   constraints:

   o  All EXT-X-MEDIA tags in the same Group MUST have different NAME
      attributes.

   o  A Group MUST NOT have more than one member with a DEFAULT
      attribute of YES.

   o  Each EXT-X-MEDIA tag with an AUTOSELECT=YES attribute SHOULD have
      a combination of LANGUAGE [RFC5646], ASSOC-LANGUAGE, FORCED, and
      CHARACTERISTICS attributes that is distinct from those of other
      AUTOSELECT=YES members of its Group.

   A Playlist MAY contain multiple Groups of the same TYPE in order to
   provide multiple encodings of that media type.  If it does so, each
   Group of the same TYPE MUST have the same set of members, and each
   corresponding member MUST have identical attributes with the
   exception of the URI and CHANNELS attributes.




Pantos & May                  Informational                    [Page 28]
RFC 8216                   HTTP Live Streaming               August 2017


   Each member in a Group of Renditions MAY have a different sample
   format.  For example, an English Rendition can be encoded with AC-3
   5.1 while a Spanish Rendition is encoded with AAC stereo.  However,
   any EXT-X-STREAM-INF tag (Section 4.3.4.2) or EXT-X-I-FRAME-STREAM-
   INF tag (Section 4.3.4.3) that references such a Group MUST have a
   CODECS attribute that lists every sample format present in any
   Rendition in the Group, or client playback failures can occur.  In
   the example above, the CODECS attribute would include
   "ac-3,mp4a.40.2".

4.3.4.2.  EXT-X-STREAM-INF

   The EXT-X-STREAM-INF tag specifies a Variant Stream, which is a set
   of Renditions that can be combined to play the presentation.  The
   attributes of the tag provide information about the Variant Stream.

   The URI line that follows the EXT-X-STREAM-INF tag specifies a Media
   Playlist that carries a Rendition of the Variant Stream.  The URI
   line is REQUIRED.  Clients that do not support multiple video
   Renditions SHOULD play this Rendition.

   Its format is:

   #EXT-X-STREAM-INF:<attribute-list>
   <URI>

   The following attributes are defined:

      BANDWIDTH

      The value is a decimal-integer of bits per second.  It represents
      the peak segment bit rate of the Variant Stream.

      If all the Media Segments in a Variant Stream have already been
      created, the BANDWIDTH value MUST be the largest sum of peak
      segment bit rates that is produced by any playable combination of
      Renditions.  (For a Variant Stream with a single Media Playlist,
      this is just the peak segment bit rate of that Media Playlist.)
      An inaccurate value can cause playback stalls or prevent clients
      from playing the variant.

      If the Master Playlist is to be made available before all Media
      Segments in the presentation have been encoded, the BANDWIDTH
      value SHOULD be the BANDWIDTH value of a representative period of
      similar content, encoded using the same settings.






Pantos & May                  Informational                    [Page 29]
RFC 8216                   HTTP Live Streaming               August 2017


      Every EXT-X-STREAM-INF tag MUST include the BANDWIDTH attribute.

      AVERAGE-BANDWIDTH

      The value is a decimal-integer of bits per second.  It represents
      the average segment bit rate of the Variant Stream.

      If all the Media Segments in a Variant Stream have already been
      created, the AVERAGE-BANDWIDTH value MUST be the largest sum of
      average segment bit rates that is produced by any playable
      combination of Renditions.  (For a Variant Stream with a single
      Media Playlist, this is just the average segment bit rate of that
      Media Playlist.)  An inaccurate value can cause playback stalls or
      prevent clients from playing the variant.

      If the Master Playlist is to be made available before all Media
      Segments in the presentation have been encoded, the AVERAGE-
      BANDWIDTH value SHOULD be the AVERAGE-BANDWIDTH value of a
      representative period of similar content, encoded using the same
      settings.

      The AVERAGE-BANDWIDTH attribute is OPTIONAL.

      CODECS

      The value is a quoted-string containing a comma-separated list of
      formats, where each format specifies a media sample type that is
      present in one or more Renditions specified by the Variant Stream.
      Valid format identifiers are those in the ISO Base Media File
      Format Name Space defined by "The 'Codecs' and 'Profiles'
      Parameters for "Bucket" Media Types" [RFC6381].

      For example, a stream containing AAC low complexity (AAC-LC) audio
      and H.264 Main Profile Level 3.0 video would have a CODECS value
      of "mp4a.40.2,avc1.4d401e".

      Every EXT-X-STREAM-INF tag SHOULD include a CODECS attribute.

      RESOLUTION

      The value is a decimal-resolution describing the optimal pixel
      resolution at which to display all the video in the Variant
      Stream.

      The RESOLUTION attribute is OPTIONAL but is recommended if the
      Variant Stream includes video.





Pantos & May                  Informational                    [Page 30]
RFC 8216                   HTTP Live Streaming               August 2017


      FRAME-RATE

      The value is a decimal-floating-point describing the maximum frame
      rate for all the video in the Variant Stream, rounded to three
      decimal places.

      The FRAME-RATE attribute is OPTIONAL but is recommended if the
      Variant Stream includes video.  The FRAME-RATE attribute SHOULD be
      included if any video in a Variant Stream exceeds 30 frames per
      second.

      HDCP-LEVEL

      The value is an enumerated-string; valid strings are TYPE-0 and
      NONE.  This attribute is advisory; a value of TYPE-0 indicates
      that the Variant Stream could fail to play unless the output is
      protected by High-bandwidth Digital Content Protection (HDCP) Type
      0 [HDCP] or equivalent.  A value of NONE indicates that the
      content does not require output copy protection.

      Encrypted Variant Streams with different HDCP levels SHOULD use
      different media encryption keys.

      The HDCP-LEVEL attribute is OPTIONAL.  It SHOULD be present if any
      content in the Variant Stream will fail to play without HDCP.
      Clients without output copy protection SHOULD NOT load a Variant
      Stream with an HDCP-LEVEL attribute unless its value is NONE.

      AUDIO

      The value is a quoted-string.  It MUST match the value of the
      GROUP-ID attribute of an EXT-X-MEDIA tag elsewhere in the Master
      Playlist whose TYPE attribute is AUDIO.  It indicates the set of
      audio Renditions that SHOULD be used when playing the
      presentation.  See Section 4.3.4.2.1.

      The AUDIO attribute is OPTIONAL.

      VIDEO

      The value is a quoted-string.  It MUST match the value of the
      GROUP-ID attribute of an EXT-X-MEDIA tag elsewhere in the Master
      Playlist whose TYPE attribute is VIDEO.  It indicates the set of
      video Renditions that SHOULD be used when playing the
      presentation.  See Section 4.3.4.2.1.

      The VIDEO attribute is OPTIONAL.




Pantos & May                  Informational                    [Page 31]
RFC 8216                   HTTP Live Streaming               August 2017


      SUBTITLES

      The value is a quoted-string.  It MUST match the value of the
      GROUP-ID attribute of an EXT-X-MEDIA tag elsewhere in the Master
      Playlist whose TYPE attribute is SUBTITLES.  It indicates the set
      of subtitle Renditions that can be used when playing the
      presentation.  See Section 4.3.4.2.1.

      The SUBTITLES attribute is OPTIONAL.

      CLOSED-CAPTIONS

      The value can be either a quoted-string or an enumerated-string
      with the value NONE.  If the value is a quoted-string, it MUST
      match the value of the GROUP-ID attribute of an EXT-X-MEDIA tag
      elsewhere in the Playlist whose TYPE attribute is CLOSED-CAPTIONS,
      and it indicates the set of closed-caption Renditions that can be
      used when playing the presentation.  See Section 4.3.4.2.1.

      If the value is the enumerated-string value NONE, all EXT-X-
      STREAM-INF tags MUST have this attribute with a value of NONE,
      indicating that there are no closed captions in any Variant Stream
      in the Master Playlist.  Having closed captions in one Variant
      Stream but not another can trigger playback inconsistencies.

      The CLOSED-CAPTIONS attribute is OPTIONAL.

4.3.4.2.1.  Alternative Renditions

   When an EXT-X-STREAM-INF tag contains an AUDIO, VIDEO, SUBTITLES, or
   CLOSED-CAPTIONS attribute, it indicates that alternative Renditions
   of the content are available for playback of that Variant Stream.

   When defining alternative Renditions, the following constraints MUST
   be met to prevent client playback errors:

   o  All playable combinations of Renditions associated with an EXT-X-
      STREAM-INF tag MUST have an aggregate bandwidth less than or equal
      to the BANDWIDTH attribute of the EXT-X-STREAM-INF tag.

   o  If an EXT-X-STREAM-INF tag contains a RESOLUTION attribute and a
      VIDEO attribute, then every alternative video Rendition MUST have
      an optimal display resolution matching the value of the RESOLUTION
      attribute.

   o  Every alternative Rendition associated with an EXT-X-STREAM-INF
      tag MUST meet the constraints for a Variant Stream described in
      Section 6.2.4.



Pantos & May                  Informational                    [Page 32]
RFC 8216                   HTTP Live Streaming               August 2017


   The URI attribute of the EXT-X-MEDIA tag is REQUIRED if the media
   type is SUBTITLES, but OPTIONAL if the media type is VIDEO or AUDIO.
   If the media type is VIDEO or AUDIO, a missing URI attribute
   indicates that the media data for this Rendition is included in the
   Media Playlist of any EXT-X-STREAM-INF tag referencing this EXT-
   X-MEDIA tag.  If the media TYPE is AUDIO and the URI attribute is
   missing, clients MUST assume that the audio data for this Rendition
   is present in every video Rendition specified by the EXT-X-STREAM-INF
   tag.

   The URI attribute of the EXT-X-MEDIA tag MUST NOT be included if the
   media type is CLOSED-CAPTIONS.

4.3.4.3.  EXT-X-I-FRAME-STREAM-INF

   The EXT-X-I-FRAME-STREAM-INF tag identifies a Media Playlist file
   containing the I-frames of a multimedia presentation.  It stands
   alone, in that it does not apply to a particular URI in the Master
   Playlist.  Its format is:

   #EXT-X-I-FRAME-STREAM-INF:<attribute-list>

   All attributes defined for the EXT-X-STREAM-INF tag (Section 4.3.4.2)
   are also defined for the EXT-X-I-FRAME-STREAM-INF tag, except for the
   FRAME-RATE, AUDIO, SUBTITLES, and CLOSED-CAPTIONS attributes.  In
   addition, the following attribute is defined:

      URI

      The value is a quoted-string containing a URI that identifies the
      I-frame Media Playlist file.  That Playlist file MUST contain an
      EXT-X-I-FRAMES-ONLY tag.

   Every EXT-X-I-FRAME-STREAM-INF tag MUST include a BANDWIDTH attribute
   and a URI attribute.

   The provisions in Section 4.3.4.2.1 also apply to EXT-X-I-FRAME-
   STREAM-INF tags with a VIDEO attribute.

   A Master Playlist that specifies alternative VIDEO Renditions and
   I-frame Playlists SHOULD include an alternative I-frame VIDEO
   Rendition for each regular VIDEO Rendition, with the same NAME and
   LANGUAGE attributes.








Pantos & May                  Informational                    [Page 33]
RFC 8216                   HTTP Live Streaming               August 2017


4.3.4.4.  EXT-X-SESSION-DATA

   The EXT-X-SESSION-DATA tag allows arbitrary session data to be
   carried in a Master Playlist.

   Its format is:

   #EXT-X-SESSION-DATA:<attribute-list>

   The following attributes are defined:

      DATA-ID

      The value of DATA-ID is a quoted-string that identifies a
      particular data value.  The DATA-ID SHOULD conform to a reverse
      DNS naming convention, such as "com.example.movie.title"; however,
      there is no central registration authority, so Playlist authors
      SHOULD take care to choose a value that is unlikely to collide
      with others.  This attribute is REQUIRED.

      VALUE

      VALUE is a quoted-string.  It contains the data identified by
      DATA-ID.  If the LANGUAGE is specified, VALUE SHOULD contain a
      human-readable string written in the specified language.

      URI

      The value is a quoted-string containing a URI.  The resource
      identified by the URI MUST be formatted as JSON [RFC7159];
      otherwise, clients may fail to interpret the resource.

      LANGUAGE

      The value is a quoted-string containing a language tag [RFC5646]
      that identifies the language of the VALUE.  This attribute is
      OPTIONAL.

   Each EXT-X-SESSION-DATA tag MUST contain either a VALUE or URI
   attribute, but not both.

   A Playlist MAY contain multiple EXT-X-SESSION-DATA tags with the same
   DATA-ID attribute.  A Playlist MUST NOT contain more than one EXT-X-
   SESSION-DATA tag with the same DATA-ID attribute and the same
   LANGUAGE attribute.






Pantos & May                  Informational                    [Page 34]
RFC 8216                   HTTP Live Streaming               August 2017


4.3.4.5.  EXT-X-SESSION-KEY

   The EXT-X-SESSION-KEY tag allows encryption keys from Media Playlists
   to be specified in a Master Playlist.  This allows the client to
   preload these keys without having to read the Media Playlist(s)
   first.

   Its format is:

   #EXT-X-SESSION-KEY:<attribute-list>

   All attributes defined for the EXT-X-KEY tag (Section 4.3.2.4) are
   also defined for the EXT-X-SESSION-KEY, except that the value of the
   METHOD attribute MUST NOT be NONE.  If an EXT-X-SESSION-KEY is used,
   the values of the METHOD, KEYFORMAT, and KEYFORMATVERSIONS attributes
   MUST match any EXT-X-KEY with the same URI value.

   EXT-X-SESSION-KEY tags SHOULD be added if multiple Variant Streams or
   Renditions use the same encryption keys and formats.  An EXT-X-
   SESSION-KEY tag is not associated with any particular Media Playlist.

   A Master Playlist MUST NOT contain more than one EXT-X-SESSION-KEY
   tag with the same METHOD, URI, IV, KEYFORMAT, and KEYFORMATVERSIONS
   attribute values.

   The EXT-X-SESSION-KEY tag is optional.

4.3.5.  Media or Master Playlist Tags

   The tags in this section can appear in either Master Playlists or
   Media Playlists.  If one of these tags appears in a Master Playlist,
   it SHOULD NOT appear in any Media Playlist referenced by that Master
   Playlist.  A tag that appears in both MUST have the same value;
   otherwise, clients SHOULD ignore the value in the Media Playlist(s).

   These tags MUST NOT appear more than once in a Playlist.  If a tag
   appears more than once, clients MUST fail to parse the Playlist.

4.3.5.1.  EXT-X-INDEPENDENT-SEGMENTS

   The EXT-X-INDEPENDENT-SEGMENTS tag indicates that all media samples
   in a Media Segment can be decoded without information from other
   segments.  It applies to every Media Segment in the Playlist.

   Its format is:

   #EXT-X-INDEPENDENT-SEGMENTS




Pantos & May                  Informational                    [Page 35]
RFC 8216                   HTTP Live Streaming               August 2017


   If the EXT-X-INDEPENDENT-SEGMENTS tag appears in a Master Playlist,
   it applies to every Media Segment in every Media Playlist in the
   Master Playlist.

4.3.5.2.  EXT-X-START

   The EXT-X-START tag indicates a preferred point at which to start
   playing a Playlist.  By default, clients SHOULD start playback at
   this point when beginning a playback session.  This tag is OPTIONAL.

   Its format is:

   #EXT-X-START:<attribute-list>

   The following attributes are defined:

      TIME-OFFSET

      The value of TIME-OFFSET is a signed-decimal-floating-point number
      of seconds.  A positive number indicates a time offset from the
      beginning of the Playlist.  A negative number indicates a negative
      time offset from the end of the last Media Segment in the
      Playlist.  This attribute is REQUIRED.

      The absolute value of TIME-OFFSET SHOULD NOT be larger than the
      Playlist duration.  If the absolute value of TIME-OFFSET exceeds
      the duration of the Playlist, it indicates either the end of the
      Playlist (if positive) or the beginning of the Playlist (if
      negative).

      If the Playlist does not contain the EXT-X-ENDLIST tag, the TIME-
      OFFSET SHOULD NOT be within three target durations of the end of
      the Playlist file.

      PRECISE

      The value is an enumerated-string; valid strings are YES and NO.
      If the value is YES, clients SHOULD start playback at the Media
      Segment containing the TIME-OFFSET, but SHOULD NOT render media
      samples in that segment whose presentation times are prior to the
      TIME-OFFSET.  If the value is NO, clients SHOULD attempt to render
      every media sample in that segment.  This attribute is OPTIONAL.
      If it is missing, its value should be treated as NO.








Pantos & May                  Informational                    [Page 36]
RFC 8216                   HTTP Live Streaming               August 2017


5.  Key Files

5.1.  Structure of Key Files

   An EXT-X-KEY tag with a URI attribute identifies a Key file.  A Key
   file contains a cipher key that can decrypt Media Segments in the
   Playlist.

   [AES_128] encryption uses 16-octet keys.  If the KEYFORMAT of an EXT-
   X-KEY tag is "identity", the Key file is a single packed array of 16
   octets in binary format.

5.2.  IV for AES-128

   [AES_128] REQUIRES the same 16-octet IV to be supplied when
   encrypting and decrypting.  Varying this IV increases the strength of
   the cipher.

   An IV attribute on an EXT-X-KEY tag with a KEYFORMAT of "identity"
   specifies an IV that can be used when decrypting Media Segments
   encrypted with that Key file.  IV values for AES-128 are 128-bit
   numbers.

   An EXT-X-KEY tag with a KEYFORMAT of "identity" that does not have an
   IV attribute indicates that the Media Sequence Number is to be used
   as the IV when decrypting a Media Segment, by putting its big-endian
   binary representation into a 16-octet (128-bit) buffer and padding
   (on the left) with zeros.

6.  Client/Server Responsibilities

6.1.  Introduction

   This section describes how the server generates the Playlist and
   Media Segments and how the client should download them for playback.

6.2.  Server Responsibilities

6.2.1.  General Server Responsibilities

   The production of the source media is outside the scope of this
   document, which simply presumes a source of continuous encoded media
   containing the presentation.

   The server MUST divide the source media into individual Media
   Segments whose duration is less than or equal to a constant target
   duration.  Segments that are longer than the planned target duration
   can trigger playback stalls and other errors.



Pantos & May                  Informational                    [Page 37]
RFC 8216                   HTTP Live Streaming               August 2017


   The server SHOULD attempt to divide the source media at points that
   support effective decode of individual Media Segments, e.g., on
   packet and key frame boundaries.

   The server MUST create a URI for every Media Segment that enables its
   clients to obtain the segment data.  If a server supports partial
   loading of resources (e.g., via HTTP Range requests), it MAY specify
   segments as sub-ranges of larger resources using the EXT-X-BYTERANGE
   tag.

   Any Media Segment that is specified in a Playlist loaded by a client
   MUST be available for immediate download, or playback errors can
   occur.  Once download starts, its transfer rate SHOULD NOT be
   constrained by the segment production process.

   HTTP servers SHOULD transfer text files -- such as Playlists and
   WebVTT segments -- using the "gzip" Content-Encoding if the client
   indicates that it is prepared to accept it.

   The server must create a Media Playlist file (Section 4) that
   contains a URI for each Media Segment that the server wishes to make
   available, in the order in which they are to be played.

   The value of the EXT-X-VERSION tag (Section 4.3.1.2) SHOULD NOT be
   greater than what is required for the tags and attributes in the
   Playlist (see Section 7).

   Changes to the Playlist file MUST be made atomically from the point
   of view of the clients, or playback errors MAY occur.

   The server MUST NOT change the Media Playlist file, except to:

   o  Append lines to it (Section 6.2.1).

   o  Remove Media Segment URIs from the Playlist in the order that they
      appear, along with any tags that apply only to those segments
      (Section 6.2.2).

   o  Increment the value of the EXT-X-MEDIA-SEQUENCE or EXT-X-
      DISCONTINUITY-SEQUENCE tags (Section 6.2.2).

   o  Add an EXT-X-ENDLIST tag to the Playlist (Section 6.2.1).









Pantos & May                  Informational                    [Page 38]
RFC 8216                   HTTP Live Streaming               August 2017


   A Media Playlist has further constraints on its updates if it
   contains an EXT-X-PLAYLIST-TYPE tag.  An EXT-X-PLAYLIST-TYPE tag with
   a value of VOD indicates that the Playlist file MUST NOT change.  An
   EXT-X-PLAYLIST-TYPE tag with a value of EVENT indicates that the
   server MUST NOT change or delete any part of the Playlist file; it
   MAY append lines to it.

   The value of the EXT-X-TARGETDURATION tag in the Media Playlist MUST
   NOT change.  A typical target duration is 10 seconds.

   Playlist changes other than those allowed here can trigger playback
   errors and inconsistent client behavior.

   Each Media Segment in a Media Playlist has an integer Discontinuity
   Sequence Number.  The Discontinuity Sequence Number can be used in
   addition to the timestamps within the media to synchronize Media
   Segments across different Renditions.

   A segment's Discontinuity Sequence Number is the value of the EXT-X-
   DISCONTINUITY-SEQUENCE tag (or zero if none) plus the number of EXT-
   X-DISCONTINUITY tags in the Playlist preceding the URI line of the
   segment.

   The server MAY associate an absolute date and time with a Media
   Segment by applying an EXT-X-PROGRAM-DATE-TIME tag to it.  This
   defines an informative mapping of the (wall-clock) date and time
   specified by the tag to the first media timestamp in the segment,
   which may be used as a basis for seeking, for display, or for other
   purposes.  If a server provides this mapping, it SHOULD apply an EXT-
   X-PROGRAM-DATE-TIME tag to every segment that has an EXT-
   X-DISCONTINUITY tag applied to it.

   The Server MUST NOT add any EXT-X-PROGRAM-DATE-TIME tag to a Playlist
   that would cause the mapping between program date and Media Segment
   to become ambiguous.

   The server MUST NOT remove an EXT-X-DATERANGE tag from a Playlist if
   any date in the range maps to a Media Segment in the Playlist.

   The server MUST NOT reuse the ID attribute value of an EXT-
   X-DATERANGE tag for any new Date Range in the same Playlist.

   Once the Following Range of a Date Range with an END-ON-NEXT=YES
   attribute is added to a Playlist, the Server MUST NOT subsequently
   add a Date Range with the same CLASS attribute whose START-DATE is
   between that of the END-ON-NEXT=YES range and its Following Range.





Pantos & May                  Informational                    [Page 39]
RFC 8216                   HTTP Live Streaming               August 2017


   For Date Ranges with a PLANNED-DURATION attribute, the Server SHOULD
   signal the actual end of the range once it has been established.  It
   can do so by adding another EXT-X-DATERANGE tag with the same ID
   attribute value and either a DURATION or an END-DATE attribute or, if
   the Date Range has an END-ON-NEXT=YES attribute, by adding a
   Following Range.

   If the Media Playlist contains the final Media Segment of the
   presentation, then the Playlist file MUST contain the EXT-X-ENDLIST
   tag; this allows clients to minimize unproductive Playlist reloads.

   If a Media Playlist does not contain the EXT-X-ENDLIST tag, the
   server MUST make a new version of the Playlist file available that
   contains at least one new Media Segment.  It MUST be made available
   relative to the time that the previous version of the Playlist file
   was made available: no earlier than one-half the target duration
   after that time, and no later than 1.5 times the target duration
   after that time.  This allows clients to utilize the network
   efficiently.

   If the server wishes to remove an entire presentation, it SHOULD
   provide a clear indication to clients that the Playlist file is no
   longer available (e.g., with an HTTP 404 or 410 response).  It MUST
   ensure that all Media Segments in the Playlist file remain available
   to clients for at least the duration of the Playlist file at the time
   of removal to prevent interruption of in-progress playback.

6.2.2.  Live Playlists

   The server MAY limit the availability of Media Segments by removing
   Media Segments from the Playlist file (Section 6.2.1).  If Media
   Segments are to be removed, the Playlist file MUST contain an EXT-X-
   MEDIA-SEQUENCE tag.  Its value MUST be incremented by 1 for every
   Media Segment that is removed from the Playlist file; it MUST NOT
   decrease or wrap.  Clients can malfunction if each Media Segment does
   not have a consistent, unique Media Sequence Number.

   Media Segments MUST be removed from the Playlist file in the order
   that they appear in the Playlist; otherwise, client playback can
   malfunction.

   The server MUST NOT remove a Media Segment from a Playlist file
   without an EXT-X-ENDLIST tag if that would produce a Playlist whose
   duration is less than three times the target duration.  Doing so can
   trigger playback stalls.






Pantos & May                  Informational                    [Page 40]
RFC 8216                   HTTP Live Streaming               August 2017


   When the server removes a Media Segment URI from the Playlist, the
   corresponding Media Segment MUST remain available to clients for a
   period of time equal to the duration of the segment plus the duration
   of the longest Playlist file distributed by the server containing
   that segment.  Removing a Media Segment earlier than that can
   interrupt in-progress playback.

   If the server wishes to remove segments from a Media Playlist
   containing an EXT-X-DISCONTINUITY tag, the Media Playlist MUST
   contain an EXT-X-DISCONTINUITY-SEQUENCE tag.  Without the EXT-X-
   DISCONTINUITY-SEQUENCE tag, it can be impossible for a client to
   locate corresponding segments between Renditions.

   If the server removes an EXT-X-DISCONTINUITY tag from the Media
   Playlist, it MUST increment the value of the EXT-X-DISCONTINUITY-
   SEQUENCE tag so that the Discontinuity Sequence Numbers of the
   segments still in the Media Playlist remain unchanged.  The value of
   the EXT-X-DISCONTINUITY-SEQUENCE tag MUST NOT decrease or wrap.
   Clients can malfunction if each Media Segment does not have a
   consistent Discontinuity Sequence Number.

   If a server plans to remove a Media Segment after it is delivered to
   clients over HTTP, it SHOULD ensure that the HTTP response contains
   an Expires header that reflects the planned time-to-live.

   A Live Playlist MUST NOT contain the EXT-X-PLAYLIST-TYPE tag, as no
   value of that tag allows Media Segments to be removed.

6.2.3.  Encrypting Media Segments

   Media Segments MAY be encrypted.  Every encrypted Media Segment MUST
   have an EXT-X-KEY tag (Section 4.3.2.4) applied to it with a URI that
   the client can use to obtain a Key file (Section 5) containing the
   decryption key.

   A Media Segment can only be encrypted with one encryption METHOD,
   using one encryption key and IV.  However, a server MAY offer
   multiple ways to retrieve that key by providing multiple EXT-X-KEY
   tags, each with a different KEYFORMAT attribute value.

   The server MAY set the HTTP Expires header in the key response to
   indicate the duration for which the key can be cached.

   Any unencrypted Media Segment in a Playlist that is preceded by an
   encrypted Media Segment MUST have an EXT-X-KEY tag applied to it with
   a METHOD attribute of NONE.  Otherwise, the client will misinterpret
   those segments as encrypted.




Pantos & May                  Informational                    [Page 41]
RFC 8216                   HTTP Live Streaming               August 2017


   If the encryption METHOD is AES-128 and the Playlist does not contain
   the EXT-X-I-FRAMES-ONLY tag, AES encryption as described in
   Section 4.3.2.4 SHALL be applied to individual Media Segments.

   If the encryption METHOD is AES-128 and the Playlist contains an EXT-
   X-I-FRAMES-ONLY tag, the entire resource MUST be encrypted using
   AES-128 CBC with PKCS7 padding [RFC5652].  Encryption MAY be
   restarted on 16-byte block boundaries, unless the first block
   contains an I-frame.  The IV used for encryption MUST be either the
   Media Sequence Number of the Media Segment or the value of the IV
   attribute of the EXT-X-KEY tag, as described in Section 5.2.  These
   constraints allow a client to load and decrypt individual I-frames
   specified as sub-ranges of regular encrypted Media Segments, and
   their Media Initialization Sections.

   If the encryption METHOD is SAMPLE-AES, media samples MAY be
   encrypted prior to encapsulation in a Media Segment.

   The server MUST NOT remove an EXT-X-KEY tag from the Playlist file if
   it applies to any Media Segment in the Playlist file, or clients who
   subsequently load that Playlist will be unable to decrypt those Media
   Segments.

6.2.4.  Providing Variant Streams

   A server MAY offer multiple Media Playlist files to provide different
   encodings of the same presentation.  If it does so, it SHOULD provide
   a Master Playlist file that lists each Variant Stream to allow
   clients to switch between encodings dynamically.

   Master Playlists describe regular Variant Streams with EXT-X-STREAM-
   INF tags and I-frame Variant Streams with EXT-X-I-FRAME-STREAM-INF
   tags.

   If an EXT-X-STREAM-INF tag or EXT-X-I-FRAME-STREAM-INF tag contains
   the CODECS attribute, the attribute value MUST include every media
   format [RFC6381] present in any Media Segment in any of the
   Renditions specified by the Variant Stream.













Pantos & May                  Informational                    [Page 42]
RFC 8216                   HTTP Live Streaming               August 2017


   The server MUST meet the following constraints when producing Variant
   Streams in order to allow clients to switch between them seamlessly:

   o  Each Variant Stream MUST present the same content.


   o  Matching content in Variant Streams MUST have matching timestamps.
      This allows clients to synchronize the media.

   o  Matching content in Variant Streams MUST have matching
      Discontinuity Sequence Numbers (see Section 4.3.3.3).

   o  Each Media Playlist in each Variant Stream MUST have the same
      target duration.  The only exceptions are SUBTITLES Renditions and
      Media Playlists containing an EXT-X-I-FRAMES-ONLY tag, which MAY
      have different target durations if they have an EXT-X-PLAYLIST-
      TYPE of VOD.

   o  Content that appears in a Media Playlist of one Variant Stream but
      not in another MUST appear either at the beginning or at the end
      of the Media Playlist file and MUST NOT be longer than the target
      duration.

   o  If any Media Playlists have an EXT-X-PLAYLIST-TYPE tag, all Media
      Playlists MUST have an EXT-X-PLAYLIST-TYPE tag with the same
      value.

   o  If the Playlist contains an EXT-X-PLAYLIST-TYPE tag with the value
      of VOD, the first segment of every Media Playlist in every Variant
      Stream MUST start at the same media timestamp.

   o  If any Media Playlist in a Master Playlist contains an EXT-X-
      PROGRAM-DATE-TIME tag, then all Media Playlists in that Master
      Playlist MUST contain EXT-X-PROGRAM-DATE-TIME tags with consistent
      mappings of date and time to media timestamps.

   o  Each Variant Stream MUST contain the same set of Date Ranges, each
      one identified by an EXT-X-DATERANGE tag(s) with the same ID
      attribute value and containing the same set of attribute/value
      pairs.

   In addition, for broadest compatibility, Variant Streams SHOULD
   contain the same encoded audio bitstream.  This allows clients to
   switch between Variant Streams without audible glitching.

   The rules for Variant Streams also apply to alternative Renditions
   (see Section 4.3.4.2.1).




Pantos & May                  Informational                    [Page 43]
RFC 8216                   HTTP Live Streaming               August 2017


6.3.  Client Responsibilities

6.3.1.  General Client Responsibilities

   How the client obtains the URI to the Playlist file is outside the
   scope of this document; it is presumed to have done so.

   The client obtains the Playlist file from the URI.  If the Playlist
   file so obtained is a Master Playlist, the client can select a
   Variant Stream to load from the Master Playlist.

   Clients MUST ensure that loaded Playlists comply with Section 4 and
   that the EXT-X-VERSION tag, if present, specifies a protocol version
   supported by the client; if either check fails, the client MUST NOT
   attempt to use the Playlist, or unintended behavior could occur.

   If any URI element in a Playlist contains an URI scheme that the
   client cannot handle, the client MUST stop playback.  All clients
   MUST support HTTP schemes.

   To support forward compatibility, when parsing Playlists, clients
   MUST:

   o  ignore any unrecognized tags.

   o  ignore any attribute/value pair with an unrecognized
      AttributeName.

   o  ignore any tag containing an attribute/value pair of type
      enumerated-string whose AttributeName is recognized but whose
      AttributeValue is not recognized, unless the definition of the
      attribute says otherwise.

   Algorithms used by the client to switch between Variant Streams are
   beyond the scope of this document.

6.3.2.  Loading the Media Playlist File

   Every time a Media Playlist is loaded or reloaded from a Playlist
   URI, the client MUST determine the next Media Segment to load, as
   described in Section 6.3.5, if it intends to play the presentation
   normally (i.e., in Playlist order at the nominal playback rate).

   If the Media Playlist contains the EXT-X-MEDIA-SEQUENCE tag, the
   client SHOULD assume that each Media Segment in it will become
   unavailable at the time that the Playlist file was loaded plus the
   duration of the Playlist file.




Pantos & May                  Informational                    [Page 44]
RFC 8216                   HTTP Live Streaming               August 2017


   A client MAY use the segment Media Sequence Number to track the
   location of a Media Segment within a Playlist when the Playlist is
   reloaded.

   A client MUST NOT assume that segments with the same Media Sequence
   Number in different Variant Streams or Renditions have the same
   position in the presentation; Playlists MAY have independent Media
   Sequence Numbers.  Instead, a client MUST use the relative position
   of each segment on the Playlist timeline and its Discontinuity
   Sequence Number to locate corresponding segments.

   A client MUST load the Media Playlist file of every Rendition
   selected for playback in order to locate the media specific to that
   Rendition.  But, to prevent unnecessary load on the server, it SHOULD
   NOT load the Playlist file of any other Rendition.

   For some Variant Streams, it is possible to select Renditions that do
   not include the Rendition specified by the EXT-X-STREAM-INF tag.  As
   noted above, the client SHOULD NOT load that Rendition in those
   cases.

6.3.3.  Playing the Media Playlist File

   The client SHALL choose which Media Segment to play first from the
   Media Playlist when playback starts.  If the EXT-X-ENDLIST tag is not
   present and the client intends to play the media normally, the client
   SHOULD NOT choose a segment that starts less than three target
   durations from the end of the Playlist file.  Doing so can trigger
   playback stalls.

   Normal playback can be achieved by playing the Media Segments in the
   order that they appear in the Playlist.  The client MAY present the
   available media in any way it wishes, including normal playback,
   random access, and trick modes.

   The encoding parameters for samples in a Media Segment and across
   multiple Media Segments in a Media Playlist SHOULD remain consistent.
   However, clients SHOULD deal with encoding changes as they are
   encountered, for example, by scaling video content to accommodate a
   resolution change.  If the Variant Stream includes a RESOLUTION
   attribute, clients SHOULD display all video within a rectangle with
   the same proportions as that resolution.

   Clients SHOULD be prepared to handle multiple tracks of a particular
   type (e.g., audio or video).  A client with no other preference
   SHOULD choose the track with the lowest numerical track identifier
   that it can play.




Pantos & May                  Informational                    [Page 45]
RFC 8216                   HTTP Live Streaming               August 2017


   Clients SHOULD ignore private streams inside Transport Streams that
   they do not recognize.  Private streams can be used to support
   different devices with the same stream, although stream authors
   SHOULD be sensitive to the additional network load that this imposes.

   The client MUST be prepared to reset its parser(s) and decoder(s)
   before playing a Media Segment that has an EXT-X-DISCONTINUITY tag
   applied to it; otherwise, playback errors can occur.

   The client SHOULD attempt to load Media Segments in advance of when
   they will be required for uninterrupted playback to compensate for
   temporary variations in latency and throughput.

   The client MAY use the value of the EXT-X-PROGRAM-DATE-TIME tag to
   display the program origination time to the user.  If the value
   includes time zone information, the client SHALL take it into
   account; if it does not, the client MAY assume the time to be local.

   Note that dates in Playlists can refer to when the content was
   produced (or to other times), which have no relation to the time of
   playback.

   If the first EXT-X-PROGRAM-DATE-TIME tag in a Playlist appears after
   one or more Media Segment URIs, the client SHOULD extrapolate
   backward from that tag (using EXTINF durations and/or media
   timestamps) to associate dates with those segments.  To associate a
   date with any other Media Segment that does not have an EXT-X-
   PROGRAM-DATE-TIME tag applied to it directly, the client SHOULD
   extrapolate forward from the last EXT-X-PROGRAM-DATE-TIME tag
   appearing before that segment in the Playlist.

6.3.4.  Reloading the Media Playlist File

   The client MUST periodically reload a Media Playlist file to learn
   what media is currently available, unless it contains an EXT-X-
   PLAYLIST-TYPE tag with a value of VOD, or a value of EVENT and the
   EXT-X-ENDLIST tag is also present.

   However, the client MUST NOT attempt to reload the Playlist file more
   frequently than specified by this section, in order to limit the
   collective load on the server.

   When a client loads a Playlist file for the first time or reloads a
   Playlist file and finds that it has changed since the last time it
   was loaded, the client MUST wait for at least the target duration
   before attempting to reload the Playlist file again, measured from
   the last time the client began loading the Playlist file.




Pantos & May                  Informational                    [Page 46]
RFC 8216                   HTTP Live Streaming               August 2017


   If the client reloads a Playlist file and finds that it has not
   changed, then it MUST wait for a period of one-half the target
   duration before retrying.

   After reloading a Media Playlist, the client SHOULD verify that each
   Media Segment in it has the same URI (and byte range, if specified)
   as the Media Segment with the same Media Sequence Number in the
   previous Media Playlist.  It SHOULD halt playback if it does not, as
   this normally indicates a server error.

   In order to reduce server load, the client SHOULD NOT reload the
   Playlist files of Variant Streams or alternate Renditions that are
   not currently being played.  If it decides to switch playback to a
   different Variant Stream, it SHOULD stop reloading the Playlist of
   the old Variant Stream and begin loading the Playlist of the new
   Variant Stream.  It can use the EXTINF durations and the constraints
   in Section 6.2.4 to determine the approximate location of
   corresponding media.  Once media from the new Variant Stream has been
   loaded, the timestamps in the Media Segments can be used to
   synchronize the old and new timelines precisely.

   A client MUST NOT attempt to use the Media Sequence Number to
   synchronize between streams (see Section 6.3.2).

6.3.5.  Determining the Next Segment to Load

   The client MUST examine the Media Playlist file every time it is
   loaded or reloaded to determine the next Media Segment to load, as
   the set of available media MAY have changed.

   The first segment to load is generally the segment that the client
   has chosen to play first (see Section 6.3.3).

   In order to play the presentation normally, the next Media Segment to
   load is the one with the lowest Media Sequence Number that is greater
   than the Media Sequence Number of the last Media Segment loaded.

6.3.6.  Decrypting Encrypted Media Segments

   If a Media Playlist file contains an EXT-X-KEY tag that specifies a
   Key file URI, the client can obtain that Key file and use the key
   inside it to decrypt all Media Segments to which that EXT-X-KEY tag
   applies.








Pantos & May                  Informational                    [Page 47]
RFC 8216                   HTTP Live Streaming               August 2017


   A client MUST ignore any EXT-X-KEY tag with an unsupported or
   unrecognized KEYFORMAT attribute, to allow for cross-device
   addressability.  If the Playlist contains a Media Segment to which
   only EXT-X-KEY tags with unrecognized or unsupported KEYFORMAT
   attributes are applied, playback SHOULD fail.

   A client MUST NOT attempt to decrypt any segments whose EXT-X-KEY tag
   has a METHOD attribute that it does not recognize.

   If the encryption METHOD is AES-128, AES-128 CBC decryption SHALL be
   applied to individual Media Segments, whose encryption format is
   described in Section 4.3.2.4.

   If the encryption METHOD is AES-128 and the Media Segment is part of
   an I-frame Playlist (Section 4.3.3.6) and it has an EXT-X-BYTERANGE
   tag applied to it, special care needs to be taken in loading and
   decrypting the segment, because the resource identified by the URI is
   encrypted in 16-byte blocks from the start of the resource.

   The decrypted I-frame can be recovered by first widening its byte
   range, as specified by the EXT-X-BYTERANGE tag, so that it starts and
   ends on 16-byte boundaries from the start of the resource.

   Next, the byte range is widened further to include a 16-byte block at
   the beginning of the range.  This 16-byte block allows the correct IV
   for the following block to be calculated.

   The widened byte range can then be loaded and decrypted with AES-128
   CBC using an arbitrary IV.  The number of bytes added to the
   beginning and the end of the original byte range are discarded from
   the decrypted bytes; what remains is the decrypted I-frame.

   If the encryption METHOD is SAMPLE-AES, AES-128 decryption SHALL be
   applied to encrypted media samples within the Media Segment.

   An EXT-X-KEY tag with a METHOD of NONE indicates that the Media
   Segments it applies to are not encrypted.

7.  Protocol Version Compatibility

   Protocol compatibility is specified by the EXT-X-VERSION tag.  A
   Playlist that contains tags or attributes that are not compatible
   with protocol version 1 MUST include an EXT-X-VERSION tag.

   A client MUST NOT attempt playback if it does not support the
   protocol version specified by the EXT-X-VERSION tag, or unintended
   behavior could occur.




Pantos & May                  Informational                    [Page 48]
RFC 8216                   HTTP Live Streaming               August 2017


   A Media Playlist MUST indicate an EXT-X-VERSION of 2 or higher if it
   contains:

   o  The IV attribute of the EXT-X-KEY tag.

   A Media Playlist MUST indicate an EXT-X-VERSION of 3 or higher if it
   contains:

   o  Floating-point EXTINF duration values.

   A Media Playlist MUST indicate an EXT-X-VERSION of 4 or higher if it
   contains:

   o  The EXT-X-BYTERANGE tag.

   o  The EXT-X-I-FRAMES-ONLY tag.

   A Media Playlist MUST indicate an EXT-X-VERSION of 5 or higher if it
   contains:

   o  The KEYFORMAT and KEYFORMATVERSIONS attributes of the EXT-X-KEY
      tag.

   o  The EXT-X-MAP tag.

   A Media Playlist MUST indicate an EXT-X-VERSION of 6 or higher if it
   contains:

   o  The EXT-X-MAP tag in a Media Playlist that does not contain EXT-
      X-I-FRAMES-ONLY.

   A Master Playlist MUST indicate an EXT-X-VERSION of 7 or higher if it
   contains:

   o  "SERVICE" values for the INSTREAM-ID attribute of the EXT-X-MEDIA
      tag.

   The EXT-X-MEDIA tag and the AUDIO, VIDEO, and SUBTITLES attributes of
   the EXT-X-STREAM-INF tag are backward compatible to protocol version
   1, but playback on older clients may not be desirable.  A server MAY
   consider indicating an EXT-X-VERSION of 4 or higher in the Master
   Playlist but is not required to do so.

   The PROGRAM-ID attribute of the EXT-X-STREAM-INF and the EXT-X-I-
   FRAME-STREAM-INF tags was removed in protocol version 6.

   The EXT-X-ALLOW-CACHE tag was removed in protocol version 7.




Pantos & May                  Informational                    [Page 49]
RFC 8216                   HTTP Live Streaming               August 2017


8.  Playlist Examples

8.1.  Simple Media Playlist

   #EXTM3U
   #EXT-X-TARGETDURATION:10
   #EXT-X-VERSION:3
   #EXTINF:9.009,
   http://media.example.com/first.ts
   #EXTINF:9.009,
   http://media.example.com/second.ts
   #EXTINF:3.003,
   http://media.example.com/third.ts
   #EXT-X-ENDLIST

8.2.  Live Media Playlist Using HTTPS

   #EXTM3U
   #EXT-X-VERSION:3
   #EXT-X-TARGETDURATION:8
   #EXT-X-MEDIA-SEQUENCE:2680

   #EXTINF:7.975,
   https://priv.example.com/fileSequence2680.ts
   #EXTINF:7.941,
   https://priv.example.com/fileSequence2681.ts
   #EXTINF:7.975,
   https://priv.example.com/fileSequence2682.ts























Pantos & May                  Informational                    [Page 50]
RFC 8216                   HTTP Live Streaming               August 2017


8.3.  Playlist with Encrypted Media Segments

   #EXTM3U
   #EXT-X-VERSION:3
   #EXT-X-MEDIA-SEQUENCE:7794
   #EXT-X-TARGETDURATION:15

   #EXT-X-KEY:METHOD=AES-128,URI="https://priv.example.com/key.php?r=52"

   #EXTINF:2.833,
   http://media.example.com/fileSequence52-A.ts
   #EXTINF:15.0,
   http://media.example.com/fileSequence52-B.ts
   #EXTINF:13.333,
   http://media.example.com/fileSequence52-C.ts

   #EXT-X-KEY:METHOD=AES-128,URI="https://priv.example.com/key.php?r=53"

   #EXTINF:15.0,
   http://media.example.com/fileSequence53-A.ts

8.4.  Master Playlist

   #EXTM3U
   #EXT-X-STREAM-INF:BANDWIDTH=1280000,AVERAGE-BANDWIDTH=1000000
   http://example.com/low.m3u8
   #EXT-X-STREAM-INF:BANDWIDTH=2560000,AVERAGE-BANDWIDTH=2000000
   http://example.com/mid.m3u8
   #EXT-X-STREAM-INF:BANDWIDTH=7680000,AVERAGE-BANDWIDTH=6000000
   http://example.com/hi.m3u8
   #EXT-X-STREAM-INF:BANDWIDTH=65000,CODECS="mp4a.40.5"
   http://example.com/audio-only.m3u8

8.5.  Master Playlist with I-Frames

   #EXTM3U
   #EXT-X-STREAM-INF:BANDWIDTH=1280000
   low/audio-video.m3u8
   #EXT-X-I-FRAME-STREAM-INF:BANDWIDTH=86000,URI="low/iframe.m3u8"
   #EXT-X-STREAM-INF:BANDWIDTH=2560000
   mid/audio-video.m3u8
   #EXT-X-I-FRAME-STREAM-INF:BANDWIDTH=150000,URI="mid/iframe.m3u8"
   #EXT-X-STREAM-INF:BANDWIDTH=7680000
   hi/audio-video.m3u8
   #EXT-X-I-FRAME-STREAM-INF:BANDWIDTH=550000,URI="hi/iframe.m3u8"
   #EXT-X-STREAM-INF:BANDWIDTH=65000,CODECS="mp4a.40.5"
   audio-only.m3u8




Pantos & May                  Informational                    [Page 51]
RFC 8216                   HTTP Live Streaming               August 2017


8.6.  Master Playlist with Alternative Audio

   In this example, the CODECS attributes have been condensed for space.
   A '\' is used to indicate that the tag continues on the following
   line with whitespace removed:

   #EXTM3U
   #EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="aac",NAME="English", \
      DEFAULT=YES,AUTOSELECT=YES,LANGUAGE="en", \
      URI="main/english-audio.m3u8"
   #EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="aac",NAME="Deutsch", \
      DEFAULT=NO,AUTOSELECT=YES,LANGUAGE="de", \
      URI="main/german-audio.m3u8"
   #EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="aac",NAME="Commentary", \
      DEFAULT=NO,AUTOSELECT=NO,LANGUAGE="en", \
      URI="commentary/audio-only.m3u8"
   #EXT-X-STREAM-INF:BANDWIDTH=1280000,CODECS="...",AUDIO="aac"
   low/video-only.m3u8
   #EXT-X-STREAM-INF:BANDWIDTH=2560000,CODECS="...",AUDIO="aac"
   mid/video-only.m3u8
   #EXT-X-STREAM-INF:BANDWIDTH=7680000,CODECS="...",AUDIO="aac"
   hi/video-only.m3u8
   #EXT-X-STREAM-INF:BANDWIDTH=65000,CODECS="mp4a.40.5",AUDIO="aac"
   main/english-audio.m3u8

8.7.  Master Playlist with Alternative Video

   This example shows three different video Renditions (Main,
   Centerfield, and Dugout) and three different Variant Streams (low,
   mid, and high).  In this example, clients that did not support the
   EXT-X-MEDIA tag and the VIDEO attribute of the EXT-X-STREAM-INF tag
   would only be able to play the video Rendition "Main".

   Since the EXT-X-STREAM-INF tag has no AUDIO attribute, all video
   Renditions would be required to contain the audio.
















Pantos & May                  Informational                    [Page 52]
RFC 8216                   HTTP Live Streaming               August 2017


   In this example, the CODECS attributes have been condensed for space.
   A '\' is used to indicate that the tag continues on the following
   line with whitespace removed:

   #EXTM3U
   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="low",NAME="Main", \
      DEFAULT=YES,URI="low/main/audio-video.m3u8"
   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="low",NAME="Centerfield", \
      DEFAULT=NO,URI="low/centerfield/audio-video.m3u8"
   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="low",NAME="Dugout", \
      DEFAULT=NO,URI="low/dugout/audio-video.m3u8"

   #EXT-X-STREAM-INF:BANDWIDTH=1280000,CODECS="...",VIDEO="low"
   low/main/audio-video.m3u8

   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="mid",NAME="Main", \
      DEFAULT=YES,URI="mid/main/audio-video.m3u8"
   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="mid",NAME="Centerfield", \
      DEFAULT=NO,URI="mid/centerfield/audio-video.m3u8"
   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="mid",NAME="Dugout", \
      DEFAULT=NO,URI="mid/dugout/audio-video.m3u8"

   #EXT-X-STREAM-INF:BANDWIDTH=2560000,CODECS="...",VIDEO="mid"
   mid/main/audio-video.m3u8

   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="hi",NAME="Main", \
      DEFAULT=YES,URI="hi/main/audio-video.m3u8"
   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="hi",NAME="Centerfield", \
      DEFAULT=NO,URI="hi/centerfield/audio-video.m3u8"
   #EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="hi",NAME="Dugout", \
      DEFAULT=NO,URI="hi/dugout/audio-video.m3u8"

   #EXT-X-STREAM-INF:BANDWIDTH=7680000,CODECS="...",VIDEO="hi"
   hi/main/audio-video.m3u8

8.8.  Session Data in a Master Playlist

   In this example, only the EXT-X-SESSION-DATA is shown:

   #EXT-X-SESSION-DATA:DATA-ID="com.example.lyrics",URI="lyrics.json"

   #EXT-X-SESSION-DATA:DATA-ID="com.example.title",LANGUAGE="en", \
           VALUE="This is an example"
   #EXT-X-SESSION-DATA:DATA-ID="com.example.title",LANGUAGE="es", \
           VALUE="Este es un ejemplo"






Pantos & May                  Informational                    [Page 53]
RFC 8216                   HTTP Live Streaming               August 2017


8.9.  CHARACTERISTICS Attribute Containing Multiple Characteristics

   Certain characteristics are valid in combination, as in:

   CHARACTERISTICS=
   "public.accessibility.transcribes-spoken-dialog,public.easy-to-read"

8.10.  EXT-X-DATERANGE Carrying SCTE-35 Tags

   This example shows two EXT-X-DATERANGE tags that describe a single
   Date Range, with an SCTE-35 "out" splice_insert() command that is
   subsequently updated with an SCTE-35 "in" splice_insert() command.

   #EXTM3U
   ...
   #EXT-X-DATERANGE:ID="splice-6FFFFFF0",START-DATE="2014-03-05T11:
   15:00Z",PLANNED-DURATION=59.993,SCTE35-OUT=0xFC002F0000000000FF0
   00014056FFFFFF000E011622DCAFF000052636200000000000A0008029896F50
   000008700000000

   ... Media Segment declarations for 60s worth of media

   #EXT-X-DATERANGE:ID="splice-6FFFFFF0",DURATION=59.993,SCTE35-IN=
   0xFC002A0000000000FF00000F056FFFFFF000401162802E6100000000000A00
   08029896F50000008700000000
   ...

9.  IANA Considerations

   IANA has registered the following media type [RFC2046]:

   Type name: application

   Subtype name: vnd.apple.mpegurl

   Required parameters: none

   Optional parameters: none

   Encoding considerations: encoded as UTF-8, which is 8-bit text.  This
   media type may require encoding on transports not capable of handling
   8-bit text.  See Section 4 for more information.

   Security considerations: See Section 10.

   Compression: this media type does not employ compression.





Pantos & May                  Informational                    [Page 54]
RFC 8216                   HTTP Live Streaming               August 2017


   Interoperability considerations: There are no byte-ordering issues,
   since files are 8-bit text.  Applications could encounter
   unrecognized tags, which SHOULD be ignored.

   Published specification: see Section 4.

   Applications that use this media type: Multimedia applications such
   as the iPhone media player in iOS 3.0 and later and QuickTime Player
   in Mac OS X version 10.6 and later.

   Fragment identifier considerations: no Fragment Identifiers are
   defined for this media type.

   Additional information:

      Deprecated alias names for this type: none
      Magic number(s): #EXTM3U
      File extension(s): .m3u8, .m3u (see Section 4)
      Macintosh file type code(s): none

   Person & email address to contact for further information: David
   Singer, singer@apple.com.

   Intended usage: LIMITED USE

   Restrictions on usage: none

   Author: Roger Pantos

   Change Controller: David Singer

10.  Security Considerations

   Since the protocol generally uses HTTP to transfer data, most of the
   same security considerations apply.  See Section 15 of HTTP
   [RFC7230].

   Media file parsers are typically subject to "fuzzing" attacks.
   Implementors SHOULD pay particular attention to code that will parse
   data received from a server and ensure that all possible inputs are
   handled correctly.

   Playlist files contain URIs, which clients will use to make network
   requests of arbitrary entities.  Clients SHOULD range-check responses
   to prevent buffer overflows.  See also the Security Considerations
   section of "Uniform Resource Identifier (URI): Generic Syntax"
   [RFC3986].




Pantos & May                  Informational                    [Page 55]
RFC 8216                   HTTP Live Streaming               August 2017


   Apart from URL resolution, this format does not employ any form of
   active content.

   Clients SHOULD limit each playback session to a reasonable number of
   concurrent downloads (e.g., four) to avoid contributing to denial-of-
   service attacks.

   HTTP requests often include session state ("cookies"), which may
   contain private user data.  Implementations MUST follow cookie
   restriction and expiry rules specified by "HTTP State Management
   Mechanism" [RFC6265] to protect themselves from attack.  See also the
   Security Considerations section of that document, and "Use of HTTP
   State Management" [RFC2964].

   Encryption keys are specified by URI.  The delivery of these keys
   SHOULD be secured by a mechanism such as HTTP Over TLS [RFC2818]
   (formerly SSL) in conjunction with a secure realm or a session token.

11.  References

11.1.  Normative References

   [AC_3]     Advanced Television Systems Committee, "Digital Audio
              Compression (AC-3) (E-AC-3) Standard", ATSC
              Standard A/52:2010, November 2010, <http://atsc.org/
              wp-content/uploads/2015/03/A52-201212-17.pdf>.

   [AES_128]  National Institute of Standards and Technology, "Advanced
              Encryption Standard (AES)", FIPS PUB 197,
              DOI 10.6028/NIST.FIPS.197, November 2001,
              <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf>.

   [CEA608]   Consumer Electronics Association, "ANSI/CEA 608-E: Line 21
              Data Services", April 2008.

   [CEA708]   Consumer Technology Association, "Digital Television (DTV)
              Closed Captioning", ANSI/CTA Standard CEA-708-E, August
              2013, <https://standards.cta.tech/kwspub/published_docs/
              ANSI-CTA-708-E-Preview.pdf>.

   [COMMON_ENC]
              International Organization for Standardization,
              "Information technology -- MPEG systems technologies --
              Part 7: Common encryption in ISO base media file format
              files", ISO/IEC 23001-7:2016, February 2016,
              <http://www.iso.org/iso/
              catalogue_detail.htm?csnumber=68042>.




Pantos & May                  Informational                    [Page 56]
RFC 8216                   HTTP Live Streaming               August 2017


   [H_264]    International Telecommunications Union, "Advanced video
              coding for generic audiovisual services", January 2012,
              <http://www.itu.int/rec/T-REC-H.264>.

   [HDCP]     Digital Content Protection LLC, "High-bandwidth Digital
              Content Protection System - Mapping HDCP to HDMI",
              February 2013, <http://www.digital-cp.com/
              sites/default/files/specifications/
              HDCP%20on%20HDMI%20Specification%20Rev2_2_Final1.pdf>.

   [ISO_13818]
              International Organization for Standardization, "Generic
              coding of moving pictures and associated audio
              information", ISO/IEC International Standard 13818,
              October 2007,
              <http://www.iso.org/iso/catalogue_detail?csnumber=44169>.

   [ISO_13818_3]
              International Organization for Standardization, "ISO/IEC
              International Standard 13818-3:1998; Generic coding of
              moving pictures and associated audio information - Part 3:
              Audio", April 1998,
              <http://www.iso.org/iso/home/store/catalogue_tc/
              catalogue_detail.htm?csnumber=26797>.

   [ISO_13818_7]
              International Organization for Standardization, "Generic
              coding of moving pictures and associated audio information
              - Part 7: Advanced Audio Coding (AAC)", ISO/IEC
              International Standard 13818-3:2006, January 2006,
              <http://www.iso.org/iso/home/store/catalogue_tc/
              catalogue_detail.htm?csnumber=43345>.

   [ISO_14496]
              International Organization for Standardization,
              "Information technology -- Coding of audio-visual objects
              -- Part 3: Audio", ISO/IEC 14496-3:2009, 2009,
              <http://www.iso.org/iso/catalogue_detail?csnumber=53943>.

   [ISO_8601] International Organization for Standardization, "Data
              elements and interchange formats -- Information
              interchange -- Representation of dates and times", ISO/IEC
              International Standard 8601:2004, December 2004,
              <http://www.iso.org/iso/catalogue_detail?csnumber=40874>.







Pantos & May                  Informational                    [Page 57]
RFC 8216                   HTTP Live Streaming               August 2017


   [ISOBMFF]  International Organization for Standardization,
              "Information technology -- Coding of audio-visual objects
              -- Part 12: ISO base media file format",
              ISO/IEC 14496-12:2015, December 2015,
              <http://www.iso.org/iso/
              catalogue_detail.htm?csnumber=68960>.

   [RFC2046]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part Two: Media Types", RFC 2046,
              DOI 10.17487/RFC2046, November 1996,
              <https://www.rfc-editor.org/info/rfc2046>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818,
              DOI 10.17487/RFC2818, May 2000,
              <https://www.rfc-editor.org/info/rfc2818>.

   [RFC2964]  Moore, K. and N. Freed, "Use of HTTP State Management",
              BCP 44, RFC 2964, DOI 10.17487/RFC2964, October 2000,
              <https://www.rfc-editor.org/info/rfc2964>.

   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
              10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
              2003, <https://www.rfc-editor.org/info/rfc3629>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.

   [RFC5646]  Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
              Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
              September 2009, <https://www.rfc-editor.org/info/rfc5646>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [RFC6265]  Barth, A., "HTTP State Management Mechanism", RFC 6265,
              DOI 10.17487/RFC6265, April 2011,
              <https://www.rfc-editor.org/info/rfc6265>.






Pantos & May                  Informational                    [Page 58]
RFC 8216                   HTTP Live Streaming               August 2017


   [RFC6381]  Gellens, R., Singer, D., and P. Frojdh, "The 'Codecs' and
              'Profiles' Parameters for "Bucket" Media Types", RFC 6381,
              DOI 10.17487/RFC6381, August 2011,
              <https://www.rfc-editor.org/info/rfc6381>.

   [RFC7159]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
              2014, <https://www.rfc-editor.org/info/rfc7159>.

   [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <https://www.rfc-editor.org/info/rfc7230>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [SCTE35]   Society of Cable Telecommunications Engineers, "Digital
              Program Insertion Cueing Message for Cable", ANSI/SCTE 35,
              August 2014, <http://www.scte.org/documents/pdf/Standards/
              ANSI_SCTE%2035%202014.pdf>.

   [US_ASCII] American National Standard for Information Systems, "Coded
              Character Sets - 7-Bit American National Standard Code for
              Information Interchange (7-Bit ASCII)", ANSI X3.4,
              December 1986.

   [WebVTT]   World Wide Web Consortium (W3C), "WebVTT: The Web Video
              Text Tracks Format", Draft Community Group Report, June
              2017, <http://dev.w3.org/html5/webvtt/>.

11.2.  Informative References

   [CMAF]     International Organization for Standardization,
              "Information technology -- Multimedia application format
              (MPEG-A) -- Part 19: Common media application format
              (CMAF) for segmented media", ISO/IEC FDIS 23000-19,
              <https://www.iso.org/standard/71975.html>.

   [ID3]      ID3.org, "The ID3 audio file data tagging format",
              <http://www.id3.org/Developer_Information>.

   [M3U]      Nullsoft, Inc., "The M3U Playlist format, originally
              invented for the Winamp media player",
              <https://en.wikipedia.org/w/
              index.php?title=M3U7amp;oldid=786631666>.




Pantos & May                  Informational                    [Page 59]
RFC 8216                   HTTP Live Streaming               August 2017


   [SampleEnc]
              Apple Inc., "MPEG-2 Stream Encryption Format for HTTP Live
              Streaming",
              <https://developer.apple.com/library/ios/documentation/
              AudioVideo/Conceptual/HLS_Sample_Encryption/>.

   [UNICODE]  The Unicode Consortium, "The Unicode Standard",
              <http://www.unicode.org/versions/latest/>.

   [UTI]      Apple Inc., "Uniform Type Identifier",
              <http://developer.apple.com/library/ios/#documentation/
              general/conceptual/DevPedia-CocoaCore/
              UniformTypeIdentifier.html>.

Contributors

   Significant contributions to the design of this protocol were made by
   Jim Batson, David Biderman, Bill May, Roger Pantos, Alan Tseng, and
   Eryk Vershen.  Stuart Cheshire helped edit the specification.

Authors' Addresses

   Roger Pantos (editor)
   Apple, Inc.
   Cupertino, California
   United States of America

   Email: http-live-streaming-review@group.apple.com


   William May, Jr.
   Major League Baseball Advanced Media
   New York, New York
   United States of America

   Email: bill.may@mlb.com















Pantos & May                  Informational                    [Page 60]
  1. RFC 8216