Home
You are not currently signed in.

RFC4494

  1. RFC 4494
Network Working Group                                           JH. Song
Request for Comments: 4494                                 R. Poovendran
Category: Standards Track                       University of Washington
                                                                  J. Lee
                                                     Samsung Electronics
                                                               June 2006


            The AES-CMAC-96 Algorithm and Its Use with IPsec

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   The National Institute of Standards and Technology (NIST) has
   recently specified the Cipher-based Message Authentication Code
   (CMAC), which is equivalent to the One-Key CBC-MAC1 (OMAC1) algorithm
   submitted by Iwata and Kurosawa.  OMAC1 efficiently reduces the key
   size of Extended Cipher Block Chaining mode (XCBC).  This memo
   specifies the use of CMAC mode on the authentication mechanism of the
   IPsec Encapsulating Security Payload (ESP) and the Authentication
   Header (AH) protocols.  This new algorithm is named AES-CMAC-96.



















Song, et al.                Standards Track                     [Page 1]
RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


1.  Introduction

   The National Institute of Standards and Technology (NIST) has
   recently specified the Cipher-based Message Authentication Code
   (CMAC).  CMAC [NIST-CMAC] is a message authentication code that is
   based on a symmetric key block cipher such as the Advanced Encryption
   Standard [NIST-AES].  CMAC is equivalent to the One-Key CBC MAC1
   (OMAC1) submitted by Iwata and Kurosawa [OMAC1a, OMAC1b].  OMAC1 is
   an improvement of the eXtended Cipher Block Chaining mode (XCBC)
   submitted by Black and Rogaway [XCBCa, XCBCb], which itself is an
   improvement of the basic CBC-MAC.  XCBC efficiently addresses the
   security deficiencies of CBC-MAC, and OMAC1 efficiently reduces the
   key size of XCBC.

   This memo specifies the usage of CMAC on the authentication mechanism
   of the IPsec Encapsulating Security Payload [ESP] and Authentication
   Header [AH] protocols.  This new algorithm is named AES-CMAC-96.  For
   further information on AH and ESP, refer to [AH] and [ROADMAP].

2.  Basic Definitions

   CBC             Cipher Block Chaining mode of operation for message
                   authentication code.

   MAC             Message Authentication Code.
                   A bit string of a fixed length, computed by the MAC
                   generation algorithm, that is used to establish the
                   authority and, hence, the integrity of a message.

   CMAC            Cipher-based MAC based on an approved symmetric key
                   block cipher, such as the Advanced Encryption
                   Standard.

   Key (K)         128-bit (16-octet) key for AES-128 cipher block.
                   Denoted by K.

   Message (M)     Message to be authenticated.
                   Denoted by M.

   Length (len)    The length of message M in octets.
                   Denoted by len.
                   The minimum value is 0.  The maximum value is not
                   specified in this document.

   truncate(T,l)   Truncate T (MAC) in most-significant-bit-first
                   (MSB-first) order to a length of l octets.

   T               The output of AES-CMAC.



Song, et al.                Standards Track                     [Page 2]
RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


   Truncated T     The truncated output of AES-CMAC-128 in MSB-first
                   order.

   AES-CMAC        CMAC generation function based on AES block cipher
                   with 128-bit key.

   AES-CMAC-96     IPsec AH and ESP MAC generation function based on
                   AES-CMAC, which truncates the 96 most significant
                   bits of the 128-bit output.

3.  AES-CMAC

   The core of AES-CMAC-96 is the AES-CMAC [AES-CMAC].  The underlying
   algorithms for AES-CMAC are the Advanced Encryption Standard cipher
   block [NIST-AES] and the recently defined CMAC mode of operation
   [NIST-CMAC].  AES-CMAC provides stronger assurance of data integrity
   than a checksum or an error detecting code.  The verification of a
   checksum or an error detecting code detects only accidental
   modifications of the data, while CMAC is designed to detect
   intentional, unauthorized modifications of the data, as well as
   accidental modifications.  The output of AES-CMAC can validate the
   input message.  Validating the message provides assurance of the
   integrity and authenticity over the message from the source.
   According to [NIST-CMAC], at least 64 bits should be used against
   guessing attacks.  AES-CMAC achieves the similar security goal of
   HMAC [RFC-HMAC].  Since AES-CMAC is based on a symmetric key block
   cipher (AES), while HMAC is based on a hash function (such as SHA-1),
   AES-CMAC is appropriate for information systems in which AES is more
   readily available than a hash function.  Detailed information about
   AES-CMAC is available in [AES-CMAC] and [NIST-CMAC].





















Song, et al.                Standards Track                     [Page 3]
RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


4.  AES-CMAC-96

   For IPsec message authentication on AH and ESP, AES-CMAC-96 should be
   used.  AES-CMAC-96 is a AES-CMAC with 96-bit truncated output in
   MSB-first order.  The output is a 96-bit MAC that will meet the
   default authenticator length as specified in [AH].  The result of
   truncation is taken in MSB-first order.  For further information on
   AES-CMAC, refer to [AES-CMAC] and [NIST-CMAC].

   Figure 1 describes AES-CMAC-96 algorithm:

   In step 1, AES-CMAC is applied to the message M in length len with
   key K.

   In step 2, the output block T is truncated to 12 octets in MSB-first
   order, and Truncated T (TT) is returned.

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
   +                    Algorithm AES-CMAC-96                          +
   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
   +                                                                   +
   +   Input    : K (128-bit Key described in Section 4.1)             +
   +            : M    (message to be authenticated)                   +
   +            : len  (length of message in octets)                   +
   +   Output   : Truncated T  (truncated output to length 12 octets)  +
   +                                                                   +
   +-------------------------------------------------------------------+
   +                                                                   +
   +   Step 1.  T  := AES-CMAC (K,M,len);                              +
   +   Step 2.  TT := truncate (T, 12);                                +
   +            return TT;                                             +
   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                   Figure 1: Algorithm AES-CMAC-96

















Song, et al.                Standards Track                     [Page 4]
RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


5.  Test Vectors

   These test cases are the same as those defined in [NIST-CMAC], with
   the exception of 96-bit truncation.

   --------------------------------------------------
   K              2b7e1516 28aed2a6 abf71588 09cf4f3c
   Subkey Generation
   AES_128(key,0) 7df76b0c 1ab899b3 3e42f047 b91b546f
   K1             fbeed618 35713366 7c85e08f 7236a8de
   K2             f7ddac30 6ae266cc f90bc11e e46d513b

   Test Case 1: len = 0
   M              <empty string>
   AES_CMAC_96    bb1d6929 e9593728 7fa37d12

   Test Case 2: len = 16
   M              6bc1bee2 2e409f96 e93d7e11 7393172a
   AES_CMAC_96    070a16b4 6b4d4144 f79bdd9d

   Test Case 3: len = 40
   M              6bc1bee2 2e409f96 e93d7e11 7393172a
                  ae2d8a57 1e03ac9c 9eb76fac 45af8e51
                  30c81c46 a35ce411
   AES_CMAC_96    dfa66747 de9ae630 30ca3261

   Test Case 4: len = 64
   M              6bc1bee2 2e409f96 e93d7e11 7393172a
                  ae2d8a57 1e03ac9c 9eb76fac 45af8e51
                  30c81c46 a35ce411 e5fbc119 1a0a52ef
                  f69f2445 df4f9b17 ad2b417b e66c3710
   AES_CMAC_96    51f0bebf 7e3b9d92 fc497417
   --------------------------------------------------

6.  Interaction with the ESP Cipher Mechanism

   As of this writing, there are no known issues that preclude the use
   of AES-CMAC-96 with any specific cipher algorithm.

7.  Security Considerations

   See the security considerations section of [AES-CMAC].

8.  IANA Considerations

   The IANA has allocated value 8 for IKEv2 Transform Type 3 (Integrity
   Algorithm) to the AUTH_AES_CMAC_96 algorithm.




Song, et al.                Standards Track                     [Page 5]
RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


9.  Acknowledgements

   Portions of this text were borrowed from [NIST-CMAC] and [XCBCa].  We
   would like to thank to Russ Housley for his useful comments.

   We acknowledge the support from the the following grants:
   Collaborative Technology Alliance (CTA) from US Army Research
   Laboratory, DAAD19-01-2-0011; Presidential Award from Army Research
   Office, W911NF-05-1-0491;  NSF CAREER, ANI-0093187.  Results do not
   reflect any position of the funding agencies.

10.  References

10.1.  Normative References

   [AES-CMAC]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
               AES-CMAC Algorithm", RFC 4493, June 2006.

   [AH]        Kent, S., "IP Authentication Header", RFC 4302, December
               2005.

   [ESP]       Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
               4303, December 2005.

   [NIST-AES]  NIST, FIPS 197, "Advanced Encryption Standard (AES)",
               November 2001, http://csrc.nist.gov/publications/fips/
               fips197/fips-197.pdf.

   [NIST-CMAC] NIST, Special Publication 800-38B Draft, "Recommendation
               for Block Cipher Modes of Operation: The CMAC Method for
               Authentication", March 9, 2005.

10.2.  Informative References

   [OMAC1a]    Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
               Fast Software Encryption, FSE 2003, LNCS 2887, pp. 129-
               153, Springer-Verlag, 2003.

   [OMAC1b]    Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
               Submission to NIST, December 2002.  Available from
               http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
               omac/omac-spec.pdf.

   [RFC-HMAC]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
               Hashing for Message Authentication", RFC 2104, February
               1997.





Song, et al.                Standards Track                     [Page 6]
RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


   [ROADMAP]   Thayer, R., Doraswamy, N., and R. Glenn, "IP Security
               Document Roadmap", RFC 2411, November 1998.

   [XCBCa]     John Black and Phillip Rogaway, "A Suggestion for
               Handling Arbitrary-Length Messages with the CBC MAC",
               NIST Second Modes of Operation Workshop, August 2001.
               Available from http://csrc.nist.gov/CryptoToolkit/modes/
               proposedmodes/xcbc-mac/xcbc-mac-spec.pdf.

   [XCBCb]     John Black and Phillip Rogaway, "CBC MACs for Arbitrary-
               Length Messages: The Three-Key Constructions", Journal of
               Cryptology, Vol. 18, No. 2, pp. 111-132, Springer-Verlag,
               Spring 2005.

Authors' Addresses

   Junhyuk Song
   University of Washington
   Samsung Electronics

   Phone: (206) 853-5843
   EMail: songlee@ee.washington.edu, junhyuk.song@samsung.com


   Jicheol Lee
   Samsung Electronics

   Phone: +82-31-279-3605
   EMail: jicheol.lee@samsung.com


   Radha Poovendran
   Network Security Lab (NSL)
   Dept. of Electrical Engineering
   University of Washington

   Phone: (206) 221-6512
   EMail: radha@ee.washington.edu













Song, et al.                Standards Track                     [Page 7]
RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


Full Copyright Statement

   Copyright (C) The Internet Society (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).







Song, et al.                Standards Track                     [Page 8]
  1. RFC 4494